使用功率谱方法的情绪反应

Wafaa Khazaal Shams, Qusay Kanaan Kadhim, Noor Ahmed Hameed, Wijdan Mahommd Khuthqair
{"title":"使用功率谱方法的情绪反应","authors":"Wafaa Khazaal Shams, Qusay Kanaan Kadhim, Noor Ahmed Hameed, Wijdan Mahommd Khuthqair","doi":"10.32441/kjps.06.01.p4","DOIUrl":null,"url":null,"abstract":"The objective of this study is to detect affective response of children to facial expression based on alpha power density of brain activity.  Electroencephalography data were collected from 10 typical children. The alpha power temporal information of active brain regions was extracted.  Performance of the power spectrum feature was evaluated in emotion recognition process using K nearest neighbor, a regularized least square and multilayer perceptron classifier. A statistical analysis indicated right alpha activity during negative and calm emotional states. Statistical results showed significant difference between rest conditions and emotional state. The best accuracy we got to detect emotional states is by using regularized least square that is 70%.","PeriodicalId":7451,"journal":{"name":"Al-Kitab Journal for Pure Sciences","volume":"442 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emotional Response using Power Spectrum Approach\",\"authors\":\"Wafaa Khazaal Shams, Qusay Kanaan Kadhim, Noor Ahmed Hameed, Wijdan Mahommd Khuthqair\",\"doi\":\"10.32441/kjps.06.01.p4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this study is to detect affective response of children to facial expression based on alpha power density of brain activity.  Electroencephalography data were collected from 10 typical children. The alpha power temporal information of active brain regions was extracted.  Performance of the power spectrum feature was evaluated in emotion recognition process using K nearest neighbor, a regularized least square and multilayer perceptron classifier. A statistical analysis indicated right alpha activity during negative and calm emotional states. Statistical results showed significant difference between rest conditions and emotional state. The best accuracy we got to detect emotional states is by using regularized least square that is 70%.\",\"PeriodicalId\":7451,\"journal\":{\"name\":\"Al-Kitab Journal for Pure Sciences\",\"volume\":\"442 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Al-Kitab Journal for Pure Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32441/kjps.06.01.p4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Al-Kitab Journal for Pure Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32441/kjps.06.01.p4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是基于大脑活动的阿尔法能量密度来检测儿童对面部表情的情感反应。收集10例典型儿童的脑电图数据。提取脑活动区域的阿尔法功率时间信息。利用K近邻、正则化最小二乘和多层感知器分类器对功率谱特征在情绪识别过程中的性能进行了评价。一项统计分析表明,在消极和平静的情绪状态下,右α活动。统计结果显示休息状态与情绪状态有显著性差异。我们检测情绪状态的最佳准确度是使用70%的正则化最小二乘。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Emotional Response using Power Spectrum Approach
The objective of this study is to detect affective response of children to facial expression based on alpha power density of brain activity.  Electroencephalography data were collected from 10 typical children. The alpha power temporal information of active brain regions was extracted.  Performance of the power spectrum feature was evaluated in emotion recognition process using K nearest neighbor, a regularized least square and multilayer perceptron classifier. A statistical analysis indicated right alpha activity during negative and calm emotional states. Statistical results showed significant difference between rest conditions and emotional state. The best accuracy we got to detect emotional states is by using regularized least square that is 70%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信