{"title":"二阶量化布尔逻辑","authors":"J. H. Jiang","doi":"10.1609/aaai.v37i4.25515","DOIUrl":null,"url":null,"abstract":"Second-order quantified Boolean formulas (SOQBFs) generalize quantified Boolean formulas (QBFs) by admitting second-order quantifiers on function variables in addition to first-order quantifiers on atomic variables. Recent endeavors establish that the complexity of SOQBF satisfiability corresponds to the exponential-time hierarchy (EXPH), similar to that of QBF satisfiability corresponding to the polynomial-time hierarchy (PH). This fact reveals the succinct expression power of SOQBFs in encoding decision problems not efficiently doable by QBFs. In this paper, we investigate the second-order quantified Boolean logic with the following main results: First, we present a procedure of quantifier elimination converting SOQBFs to QBFs and a game interpretation of SOQBF semantics. Second, we devise a sound and complete refutation-proof system for SOQBF. Third, we develop an algorithm for countermodel extraction from a refutation proof. Finally, we show potential applications of SOQBFs in system design and multi-agent planning. With these advances, we anticipate practical tools for development.","PeriodicalId":74506,"journal":{"name":"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence","volume":"47 1","pages":"4007-4015"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Second-Order Quantified Boolean Logic\",\"authors\":\"J. H. Jiang\",\"doi\":\"10.1609/aaai.v37i4.25515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Second-order quantified Boolean formulas (SOQBFs) generalize quantified Boolean formulas (QBFs) by admitting second-order quantifiers on function variables in addition to first-order quantifiers on atomic variables. Recent endeavors establish that the complexity of SOQBF satisfiability corresponds to the exponential-time hierarchy (EXPH), similar to that of QBF satisfiability corresponding to the polynomial-time hierarchy (PH). This fact reveals the succinct expression power of SOQBFs in encoding decision problems not efficiently doable by QBFs. In this paper, we investigate the second-order quantified Boolean logic with the following main results: First, we present a procedure of quantifier elimination converting SOQBFs to QBFs and a game interpretation of SOQBF semantics. Second, we devise a sound and complete refutation-proof system for SOQBF. Third, we develop an algorithm for countermodel extraction from a refutation proof. Finally, we show potential applications of SOQBFs in system design and multi-agent planning. With these advances, we anticipate practical tools for development.\",\"PeriodicalId\":74506,\"journal\":{\"name\":\"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence\",\"volume\":\"47 1\",\"pages\":\"4007-4015\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/aaai.v37i4.25515\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aaai.v37i4.25515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Second-order quantified Boolean formulas (SOQBFs) generalize quantified Boolean formulas (QBFs) by admitting second-order quantifiers on function variables in addition to first-order quantifiers on atomic variables. Recent endeavors establish that the complexity of SOQBF satisfiability corresponds to the exponential-time hierarchy (EXPH), similar to that of QBF satisfiability corresponding to the polynomial-time hierarchy (PH). This fact reveals the succinct expression power of SOQBFs in encoding decision problems not efficiently doable by QBFs. In this paper, we investigate the second-order quantified Boolean logic with the following main results: First, we present a procedure of quantifier elimination converting SOQBFs to QBFs and a game interpretation of SOQBF semantics. Second, we devise a sound and complete refutation-proof system for SOQBF. Third, we develop an algorithm for countermodel extraction from a refutation proof. Finally, we show potential applications of SOQBFs in system design and multi-agent planning. With these advances, we anticipate practical tools for development.