二阶量化布尔逻辑

J. H. Jiang
{"title":"二阶量化布尔逻辑","authors":"J. H. Jiang","doi":"10.1609/aaai.v37i4.25515","DOIUrl":null,"url":null,"abstract":"Second-order quantified Boolean formulas (SOQBFs) generalize quantified Boolean formulas (QBFs) by admitting second-order quantifiers on function variables in addition to first-order quantifiers on atomic variables. Recent endeavors establish that the complexity of SOQBF satisfiability corresponds to the exponential-time hierarchy (EXPH), similar to that of QBF satisfiability corresponding to the polynomial-time hierarchy (PH). This fact reveals the succinct expression power of SOQBFs in encoding decision problems not efficiently doable by QBFs. In this paper, we investigate the second-order quantified Boolean logic with the following main results: First, we present a procedure of quantifier elimination converting SOQBFs to QBFs and a game interpretation of SOQBF semantics. Second, we devise a sound and complete refutation-proof system for SOQBF. Third, we develop an algorithm for countermodel extraction from a refutation proof. Finally, we show potential applications of SOQBFs in system design and multi-agent planning. With these advances, we anticipate practical tools for development.","PeriodicalId":74506,"journal":{"name":"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence","volume":"47 1","pages":"4007-4015"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Second-Order Quantified Boolean Logic\",\"authors\":\"J. H. Jiang\",\"doi\":\"10.1609/aaai.v37i4.25515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Second-order quantified Boolean formulas (SOQBFs) generalize quantified Boolean formulas (QBFs) by admitting second-order quantifiers on function variables in addition to first-order quantifiers on atomic variables. Recent endeavors establish that the complexity of SOQBF satisfiability corresponds to the exponential-time hierarchy (EXPH), similar to that of QBF satisfiability corresponding to the polynomial-time hierarchy (PH). This fact reveals the succinct expression power of SOQBFs in encoding decision problems not efficiently doable by QBFs. In this paper, we investigate the second-order quantified Boolean logic with the following main results: First, we present a procedure of quantifier elimination converting SOQBFs to QBFs and a game interpretation of SOQBF semantics. Second, we devise a sound and complete refutation-proof system for SOQBF. Third, we develop an algorithm for countermodel extraction from a refutation proof. Finally, we show potential applications of SOQBFs in system design and multi-agent planning. With these advances, we anticipate practical tools for development.\",\"PeriodicalId\":74506,\"journal\":{\"name\":\"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence\",\"volume\":\"47 1\",\"pages\":\"4007-4015\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/aaai.v37i4.25515\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aaai.v37i4.25515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

二阶量化布尔公式(SOQBFs)是对量化布尔公式(QBFs)的推广,它在原子变量上除了允许一阶量词外,还允许函数变量上的二阶量词。最近的研究建立了SOQBF可满足性的复杂性对应于指数时间层次(EXPH),类似于QBF可满足性对应于多项式时间层次(PH)的复杂性。这一事实揭示了SOQBFs在编码QBFs无法有效解决的决策问题时简洁的表达能力。本文研究了二阶量化布尔逻辑,得到了以下主要结果:首先,我们给出了一个量词消去的过程,将SOQBF转换为qbf,并给出了SOQBF语义的博弈解释。其次,设计了完善的SOQBF防反驳系统。第三,我们开发了一种从反驳证明中提取反模型的算法。最后,我们展示了SOQBFs在系统设计和多智能体规划中的潜在应用。有了这些进展,我们期望有实用的发展工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Second-Order Quantified Boolean Logic
Second-order quantified Boolean formulas (SOQBFs) generalize quantified Boolean formulas (QBFs) by admitting second-order quantifiers on function variables in addition to first-order quantifiers on atomic variables. Recent endeavors establish that the complexity of SOQBF satisfiability corresponds to the exponential-time hierarchy (EXPH), similar to that of QBF satisfiability corresponding to the polynomial-time hierarchy (PH). This fact reveals the succinct expression power of SOQBFs in encoding decision problems not efficiently doable by QBFs. In this paper, we investigate the second-order quantified Boolean logic with the following main results: First, we present a procedure of quantifier elimination converting SOQBFs to QBFs and a game interpretation of SOQBF semantics. Second, we devise a sound and complete refutation-proof system for SOQBF. Third, we develop an algorithm for countermodel extraction from a refutation proof. Finally, we show potential applications of SOQBFs in system design and multi-agent planning. With these advances, we anticipate practical tools for development.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信