Garazi Retegui, J. Etxeberria, A. Riebler, M. Ugarte
{"title":"使用死亡率预测没有基于人口的癌症登记的地区的癌症发病率","authors":"Garazi Retegui, J. Etxeberria, A. Riebler, M. Ugarte","doi":"10.1093/jrsssa/qnad077","DOIUrl":null,"url":null,"abstract":"\n Cancer incidence numbers are routinely recorded by national or regional population-based cancer registries (PBCRs). However, in most southern European countries, the local PBCRs cover only a fraction of the country. Therefore, national cancer incidence can be only obtained through estimation methods. In this paper, we predict incidence rates in areas without cancer registry using multivariate spatial models modelling jointly cancer incidence and mortality. To evaluate the proposal, we use cancer incidence and mortality data from all the German states. We also conduct a simulation study by mimicking the real case of Spain considering different scenarios depending on the similarity of spatial patterns between incidence and mortality, the levels of lethality, and varying the amount of incidence data available. The new proposal provides good interval estimates in regions without PBCRs and reduces the relative error in estimating national incidence compared to one of the most widely used methodologies.","PeriodicalId":49983,"journal":{"name":"Journal of the Royal Statistical Society Series A-Statistics in Society","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting cancer incidence in regions without population-based cancer registries using mortality\",\"authors\":\"Garazi Retegui, J. Etxeberria, A. Riebler, M. Ugarte\",\"doi\":\"10.1093/jrsssa/qnad077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Cancer incidence numbers are routinely recorded by national or regional population-based cancer registries (PBCRs). However, in most southern European countries, the local PBCRs cover only a fraction of the country. Therefore, national cancer incidence can be only obtained through estimation methods. In this paper, we predict incidence rates in areas without cancer registry using multivariate spatial models modelling jointly cancer incidence and mortality. To evaluate the proposal, we use cancer incidence and mortality data from all the German states. We also conduct a simulation study by mimicking the real case of Spain considering different scenarios depending on the similarity of spatial patterns between incidence and mortality, the levels of lethality, and varying the amount of incidence data available. The new proposal provides good interval estimates in regions without PBCRs and reduces the relative error in estimating national incidence compared to one of the most widely used methodologies.\",\"PeriodicalId\":49983,\"journal\":{\"name\":\"Journal of the Royal Statistical Society Series A-Statistics in Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Royal Statistical Society Series A-Statistics in Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/jrsssa/qnad077\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"SOCIAL SCIENCES, MATHEMATICAL METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Royal Statistical Society Series A-Statistics in Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jrsssa/qnad077","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
Predicting cancer incidence in regions without population-based cancer registries using mortality
Cancer incidence numbers are routinely recorded by national or regional population-based cancer registries (PBCRs). However, in most southern European countries, the local PBCRs cover only a fraction of the country. Therefore, national cancer incidence can be only obtained through estimation methods. In this paper, we predict incidence rates in areas without cancer registry using multivariate spatial models modelling jointly cancer incidence and mortality. To evaluate the proposal, we use cancer incidence and mortality data from all the German states. We also conduct a simulation study by mimicking the real case of Spain considering different scenarios depending on the similarity of spatial patterns between incidence and mortality, the levels of lethality, and varying the amount of incidence data available. The new proposal provides good interval estimates in regions without PBCRs and reduces the relative error in estimating national incidence compared to one of the most widely used methodologies.
期刊介绍:
Series A (Statistics in Society) publishes high quality papers that demonstrate how statistical thinking, design and analyses play a vital role in all walks of life and benefit society in general. There is no restriction on subject-matter: any interesting, topical and revelatory applications of statistics are welcome. For example, important applications of statistical and related data science methodology in medicine, business and commerce, industry, economics and finance, education and teaching, physical and biomedical sciences, the environment, the law, government and politics, demography, psychology, sociology and sport all fall within the journal''s remit. The journal is therefore aimed at a wide statistical audience and at professional statisticians in particular. Its emphasis is on well-written and clearly reasoned quantitative approaches to problems in the real world rather than the exposition of technical detail. Thus, although the methodological basis of papers must be sound and adequately explained, methodology per se should not be the main focus of a Series A paper. Of particular interest are papers on topical or contentious statistical issues, papers which give reviews or exposés of current statistical concerns and papers which demonstrate how appropriate statistical thinking has contributed to our understanding of important substantive questions. Historical, professional and biographical contributions are also welcome, as are discussions of methods of data collection and of ethical issues, provided that all such papers have substantial statistical relevance.