{"title":"上下文感知的空间循环曲线结构分割","authors":"Feigege Wang, Yue Gu, Wenxi Liu, Yuanlong Yu, Shengfeng He, Jianxiong Pan","doi":"10.1109/CVPR.2019.01293","DOIUrl":null,"url":null,"abstract":"Curvilinear structures are frequently observed in various images in different forms, such as blood vessels or neuronal boundaries in biomedical images. In this paper, we propose a novel curvilinear structure segmentation approach using context-aware spatio-recurrent networks. Instead of directly segmenting the whole image or densely segmenting fixed-sized local patches, our method recurrently samples patches with varied scales from the target image with learned policy and processes them locally, which is similar to the behavior of changing retinal fixations in the human visual system and it is beneficial for capturing the multi-scale or hierarchical modality of the complex curvilinear structures. In specific, the policy of choosing local patches is attentively learned based on the contextual information of the image and the historical sampling experience. In this way, with more patches sampled and refined, the segmentation of the whole image can be progressively improved. To validate our approach, comparison experiments on different types of image data are conducted and the sampling procedures for exemplar images are illustrated. We demonstrate that our method achieves the state-of-the-art performance in public datasets.","PeriodicalId":6711,"journal":{"name":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"62 1","pages":"12640-12649"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Context-Aware Spatio-Recurrent Curvilinear Structure Segmentation\",\"authors\":\"Feigege Wang, Yue Gu, Wenxi Liu, Yuanlong Yu, Shengfeng He, Jianxiong Pan\",\"doi\":\"10.1109/CVPR.2019.01293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Curvilinear structures are frequently observed in various images in different forms, such as blood vessels or neuronal boundaries in biomedical images. In this paper, we propose a novel curvilinear structure segmentation approach using context-aware spatio-recurrent networks. Instead of directly segmenting the whole image or densely segmenting fixed-sized local patches, our method recurrently samples patches with varied scales from the target image with learned policy and processes them locally, which is similar to the behavior of changing retinal fixations in the human visual system and it is beneficial for capturing the multi-scale or hierarchical modality of the complex curvilinear structures. In specific, the policy of choosing local patches is attentively learned based on the contextual information of the image and the historical sampling experience. In this way, with more patches sampled and refined, the segmentation of the whole image can be progressively improved. To validate our approach, comparison experiments on different types of image data are conducted and the sampling procedures for exemplar images are illustrated. We demonstrate that our method achieves the state-of-the-art performance in public datasets.\",\"PeriodicalId\":6711,\"journal\":{\"name\":\"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"62 1\",\"pages\":\"12640-12649\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2019.01293\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2019.01293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Curvilinear structures are frequently observed in various images in different forms, such as blood vessels or neuronal boundaries in biomedical images. In this paper, we propose a novel curvilinear structure segmentation approach using context-aware spatio-recurrent networks. Instead of directly segmenting the whole image or densely segmenting fixed-sized local patches, our method recurrently samples patches with varied scales from the target image with learned policy and processes them locally, which is similar to the behavior of changing retinal fixations in the human visual system and it is beneficial for capturing the multi-scale or hierarchical modality of the complex curvilinear structures. In specific, the policy of choosing local patches is attentively learned based on the contextual information of the image and the historical sampling experience. In this way, with more patches sampled and refined, the segmentation of the whole image can be progressively improved. To validate our approach, comparison experiments on different types of image data are conducted and the sampling procedures for exemplar images are illustrated. We demonstrate that our method achieves the state-of-the-art performance in public datasets.