基于mrf的深度压缩平面共分割

B. Özkalayci, Aydin Alatan
{"title":"基于mrf的深度压缩平面共分割","authors":"B. Özkalayci, Aydin Alatan","doi":"10.1109/ICIP.2014.7025024","DOIUrl":null,"url":null,"abstract":"An energy based planar depth representation is proposed to obtain an efficient depth compression tool for 3DV applications. The proposed segmentation-based depth compression approach is designed by reflecting the rate-distortion tradeoff into the energy terms. A PEARL based algorithm is developed to obtain the planar approximations of depth images. Lastly depth reconstruction and novel view rendering results of the proposal compared with the state-of-the-art methods. The experiments show that the planar approach performs superior rendering results than JPEG 2000 and HEVC standards.","PeriodicalId":6856,"journal":{"name":"2014 IEEE International Conference on Image Processing (ICIP)","volume":"43 1","pages":"125-129"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"MRF-based planar co-segmentation for depth compression\",\"authors\":\"B. Özkalayci, Aydin Alatan\",\"doi\":\"10.1109/ICIP.2014.7025024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An energy based planar depth representation is proposed to obtain an efficient depth compression tool for 3DV applications. The proposed segmentation-based depth compression approach is designed by reflecting the rate-distortion tradeoff into the energy terms. A PEARL based algorithm is developed to obtain the planar approximations of depth images. Lastly depth reconstruction and novel view rendering results of the proposal compared with the state-of-the-art methods. The experiments show that the planar approach performs superior rendering results than JPEG 2000 and HEVC standards.\",\"PeriodicalId\":6856,\"journal\":{\"name\":\"2014 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"43 1\",\"pages\":\"125-129\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2014.7025024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2014.7025024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种基于能量的平面深度表示法,以获得一种高效的三维dv深度压缩工具。所提出的基于分割的深度压缩方法是通过将率失真权衡反映到能量项中来设计的。提出了一种基于PEARL的深度图像平面逼近算法。最后,将所提方法与现有方法进行了深度重建和新颖视图渲染效果的比较。实验表明,该方法的渲染效果优于JPEG 2000和HEVC标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MRF-based planar co-segmentation for depth compression
An energy based planar depth representation is proposed to obtain an efficient depth compression tool for 3DV applications. The proposed segmentation-based depth compression approach is designed by reflecting the rate-distortion tradeoff into the energy terms. A PEARL based algorithm is developed to obtain the planar approximations of depth images. Lastly depth reconstruction and novel view rendering results of the proposal compared with the state-of-the-art methods. The experiments show that the planar approach performs superior rendering results than JPEG 2000 and HEVC standards.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信