本体的自动生成:一种分层词聚类方法

IF 0.2 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Smail Sellah, V. Hilaire
{"title":"本体的自动生成:一种分层词聚类方法","authors":"Smail Sellah, V. Hilaire","doi":"10.33965/IJCSIS_2018130206","DOIUrl":null,"url":null,"abstract":"In the context of globalization, companies need to capitalize on their knowledge. The knowledge of a company is present in two forms tacit and explicit. Explicit knowledge represents all formalized information i.e all documents (pdf, words ...). Tacit knowledge is present in documents and mind of employees, this kind of knowledge is not formalized, it needs a reasoning process to discover it. The approach proposed focus on extracting tacit knowledge from textual documents. In this paper, we propose hierarchical word clustering as an improvement of word clusters generated in previous work, we also proposed an approach to extract relevant bigrams and trigrams. We use Reuters-21578 corpus to validate our approach. Our global work aims to ease the automatic building of ontologies.","PeriodicalId":41878,"journal":{"name":"IADIS-International Journal on Computer Science and Information Systems","volume":"73 1","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2018-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic generation of ontologies: a hierarchical word clustering approach\",\"authors\":\"Smail Sellah, V. Hilaire\",\"doi\":\"10.33965/IJCSIS_2018130206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the context of globalization, companies need to capitalize on their knowledge. The knowledge of a company is present in two forms tacit and explicit. Explicit knowledge represents all formalized information i.e all documents (pdf, words ...). Tacit knowledge is present in documents and mind of employees, this kind of knowledge is not formalized, it needs a reasoning process to discover it. The approach proposed focus on extracting tacit knowledge from textual documents. In this paper, we propose hierarchical word clustering as an improvement of word clusters generated in previous work, we also proposed an approach to extract relevant bigrams and trigrams. We use Reuters-21578 corpus to validate our approach. Our global work aims to ease the automatic building of ontologies.\",\"PeriodicalId\":41878,\"journal\":{\"name\":\"IADIS-International Journal on Computer Science and Information Systems\",\"volume\":\"73 1\",\"pages\":\"\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2018-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IADIS-International Journal on Computer Science and Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33965/IJCSIS_2018130206\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IADIS-International Journal on Computer Science and Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33965/IJCSIS_2018130206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在全球化的背景下,公司需要利用他们的知识。企业的知识以隐性和显性两种形式存在。显式知识表示所有形式化信息,即所有文档(pdf、word…)。隐性知识存在于文件和员工的思想中,这种知识是不形式化的,需要一个推理的过程来发现它。该方法侧重于从文本文档中提取隐性知识。在本文中,我们提出了分层词聚类方法,作为对先前工作中生成的词聚类的改进,我们还提出了一种提取相关双元和三元词的方法。我们使用Reuters-21578语料库来验证我们的方法。我们的全球工作旨在简化本体的自动构建。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic generation of ontologies: a hierarchical word clustering approach
In the context of globalization, companies need to capitalize on their knowledge. The knowledge of a company is present in two forms tacit and explicit. Explicit knowledge represents all formalized information i.e all documents (pdf, words ...). Tacit knowledge is present in documents and mind of employees, this kind of knowledge is not formalized, it needs a reasoning process to discover it. The approach proposed focus on extracting tacit knowledge from textual documents. In this paper, we propose hierarchical word clustering as an improvement of word clusters generated in previous work, we also proposed an approach to extract relevant bigrams and trigrams. We use Reuters-21578 corpus to validate our approach. Our global work aims to ease the automatic building of ontologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IADIS-International Journal on Computer Science and Information Systems
IADIS-International Journal on Computer Science and Information Systems COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信