单参数持久性的度量和稳定性

IF 1.6 2区 数学 Q2 MATHEMATICS, APPLIED
W. Chachólski, H. Riihimäki
{"title":"单参数持久性的度量和稳定性","authors":"W. Chachólski, H. Riihimäki","doi":"10.1137/19m1243932","DOIUrl":null,"url":null,"abstract":"We propose a new way of thinking about one parameter persistence. We believe topological persistence is fundamentally not about decomposition theorems but a central role is played by a choice of metrics. Choosing a pseudometric between persistent vector spaces leads to stabilization of discrete invariants. We develop theory behind this stabilization and stable rank invariant. We give evidence of the usefulness of this approach in concrete data analysis.","PeriodicalId":48489,"journal":{"name":"SIAM Journal on Applied Algebra and Geometry","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2019-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Metrics and Stabilization in One Parameter Persistence\",\"authors\":\"W. Chachólski, H. Riihimäki\",\"doi\":\"10.1137/19m1243932\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new way of thinking about one parameter persistence. We believe topological persistence is fundamentally not about decomposition theorems but a central role is played by a choice of metrics. Choosing a pseudometric between persistent vector spaces leads to stabilization of discrete invariants. We develop theory behind this stabilization and stable rank invariant. We give evidence of the usefulness of this approach in concrete data analysis.\",\"PeriodicalId\":48489,\"journal\":{\"name\":\"SIAM Journal on Applied Algebra and Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2019-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Applied Algebra and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/19m1243932\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Algebra and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/19m1243932","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 13

摘要

我们提出了一种考虑单参数持久性的新方法。我们相信拓扑持久性从根本上讲与分解定理无关,而是由度量的选择所起的核心作用。在持久向量空间之间选择一个伪度量可以稳定离散不变量。我们在此稳定化和稳定秩不变量背后发展了理论。我们在具体的数据分析中给出了这种方法的有用性的证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Metrics and Stabilization in One Parameter Persistence
We propose a new way of thinking about one parameter persistence. We believe topological persistence is fundamentally not about decomposition theorems but a central role is played by a choice of metrics. Choosing a pseudometric between persistent vector spaces leads to stabilization of discrete invariants. We develop theory behind this stabilization and stable rank invariant. We give evidence of the usefulness of this approach in concrete data analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信