{"title":"[83,42]三元二次剩余码的最小距离","authors":"Doug Kuhlman","doi":"10.1109/18.746814","DOIUrl":null,"url":null,"abstract":"We find the minimum distance of the nonextended [83,42] ternary quadratic residue code to be 20.","PeriodicalId":13250,"journal":{"name":"IEEE Trans. Inf. Theory","volume":"13 1","pages":"282"},"PeriodicalIF":0.0000,"publicationDate":"1999-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"The Minimum Distance of the [83, 42] Ternary Quadratic Residue Code\",\"authors\":\"Doug Kuhlman\",\"doi\":\"10.1109/18.746814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We find the minimum distance of the nonextended [83,42] ternary quadratic residue code to be 20.\",\"PeriodicalId\":13250,\"journal\":{\"name\":\"IEEE Trans. Inf. Theory\",\"volume\":\"13 1\",\"pages\":\"282\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Trans. Inf. Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/18.746814\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Inf. Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/18.746814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}