酷儿对偶等价图

IF 0.4 Q4 MATHEMATICS, APPLIED
Sami H. Assaf
{"title":"酷儿对偶等价图","authors":"Sami H. Assaf","doi":"10.4310/joc.2023.v14.n1.a2","DOIUrl":null,"url":null,"abstract":"We introduce a new paradigm for proving the Schur P -positivity of a given quasi-symmetric function. Generalizing dual equivalence, we give an axiomatic definition for a family of involutions on a set of objects to be a queer dual equivalence, and we prove whenever such a family exists, the fundamental quasisymmetric generating function is Schur P -positive. In contrast with shifted dual equivalence, the queer dual equivalence involutions restrict to a dual equivalence when the queer involution is omitted. We highlight the difference between these two generalizations with a new appli-cation to the product of Schur P -functions.","PeriodicalId":44683,"journal":{"name":"Journal of Combinatorics","volume":"87 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Queer dual equivalence graphs\",\"authors\":\"Sami H. Assaf\",\"doi\":\"10.4310/joc.2023.v14.n1.a2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a new paradigm for proving the Schur P -positivity of a given quasi-symmetric function. Generalizing dual equivalence, we give an axiomatic definition for a family of involutions on a set of objects to be a queer dual equivalence, and we prove whenever such a family exists, the fundamental quasisymmetric generating function is Schur P -positive. In contrast with shifted dual equivalence, the queer dual equivalence involutions restrict to a dual equivalence when the queer involution is omitted. We highlight the difference between these two generalizations with a new appli-cation to the product of Schur P -functions.\",\"PeriodicalId\":44683,\"journal\":{\"name\":\"Journal of Combinatorics\",\"volume\":\"87 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/joc.2023.v14.n1.a2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/joc.2023.v14.n1.a2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

给出了一个证明准对称函数的Schur P正性的新范式。推广对偶等价,给出了一组对象上的对合族是一个酷儿对偶等价的公理定义,并证明了当这样的对合族存在时,其基本拟对称生成函数是Schur P正的。与移位的对偶等值相反,当酷儿对偶等值被省略时,酷儿对偶等值就被限制为对偶等值。我们通过对舒尔P函数积的新应用来强调这两种推广之间的区别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Queer dual equivalence graphs
We introduce a new paradigm for proving the Schur P -positivity of a given quasi-symmetric function. Generalizing dual equivalence, we give an axiomatic definition for a family of involutions on a set of objects to be a queer dual equivalence, and we prove whenever such a family exists, the fundamental quasisymmetric generating function is Schur P -positive. In contrast with shifted dual equivalence, the queer dual equivalence involutions restrict to a dual equivalence when the queer involution is omitted. We highlight the difference between these two generalizations with a new appli-cation to the product of Schur P -functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Combinatorics
Journal of Combinatorics MATHEMATICS, APPLIED-
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信