签名加权网络中重叠簇的高效挖掘

Tuan-Anh Hoang, Ee-Peng Lim
{"title":"签名加权网络中重叠簇的高效挖掘","authors":"Tuan-Anh Hoang, Ee-Peng Lim","doi":"10.1145/3132847.3133004","DOIUrl":null,"url":null,"abstract":"In many practical contexts, networks are weighted as their links are assigned numerical weights representing relationship strengths or intensities of inter-node interaction. Moreover, the links' weight can be positive or negative, depending on the relationship or interaction between the connected nodes. The existing methods for network clustering however are not ideal for handling very large signed weighted networks. In this paper, we present a novel method called LPOCSIN (short for \"Linear Programming based Overlapping Clustering on Signed Weighted Networks\") for efficient mining of overlapping clusters in signed weighted networks. Different from existing methods that rely on computationally expensive cluster cohesiveness measures, LPOCSIN utilizes a simple yet effective one. Using this measure, we transform the cluster assignment problem into a series of alternating linear programs, and further propose a highly efficient procedure for solving those alternating problems. We evaluate LPOCSIN and other state-of-the-art methods by extensive experiments covering a wide range of synthetic and real networks. The experiments show that LPOCSIN significantly outperforms the other methods in recovering ground-truth clusters while being an order of magnitude faster than the most efficient state-of-the-art method.","PeriodicalId":20449,"journal":{"name":"Proceedings of the 2017 ACM on Conference on Information and Knowledge Management","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Highly Efficient Mining of Overlapping Clusters in Signed Weighted Networks\",\"authors\":\"Tuan-Anh Hoang, Ee-Peng Lim\",\"doi\":\"10.1145/3132847.3133004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In many practical contexts, networks are weighted as their links are assigned numerical weights representing relationship strengths or intensities of inter-node interaction. Moreover, the links' weight can be positive or negative, depending on the relationship or interaction between the connected nodes. The existing methods for network clustering however are not ideal for handling very large signed weighted networks. In this paper, we present a novel method called LPOCSIN (short for \\\"Linear Programming based Overlapping Clustering on Signed Weighted Networks\\\") for efficient mining of overlapping clusters in signed weighted networks. Different from existing methods that rely on computationally expensive cluster cohesiveness measures, LPOCSIN utilizes a simple yet effective one. Using this measure, we transform the cluster assignment problem into a series of alternating linear programs, and further propose a highly efficient procedure for solving those alternating problems. We evaluate LPOCSIN and other state-of-the-art methods by extensive experiments covering a wide range of synthetic and real networks. The experiments show that LPOCSIN significantly outperforms the other methods in recovering ground-truth clusters while being an order of magnitude faster than the most efficient state-of-the-art method.\",\"PeriodicalId\":20449,\"journal\":{\"name\":\"Proceedings of the 2017 ACM on Conference on Information and Knowledge Management\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2017 ACM on Conference on Information and Knowledge Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3132847.3133004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM on Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3132847.3133004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在许多实际情况下,网络是加权的,因为它们的链接被赋予了代表关系强度或节点间交互强度的数值权重。此外,链路的权重可以是正的,也可以是负的,这取决于连接节点之间的关系或交互。然而,现有的网络聚类方法对于处理非常大的签名加权网络并不理想。在本文中,我们提出了一种新的方法,称为LPOCSIN(简称“基于线性规划的重叠聚类签名加权网络”),用于有效挖掘签名加权网络中的重叠聚类。与现有方法依赖于计算代价高昂的聚类内聚度量不同,LPOCSIN采用了一种简单而有效的方法。利用这一度量,我们将聚类分配问题转化为一系列交替的线性规划,并进一步提出了求解这些交替问题的高效方法。我们通过广泛的实验来评估LPOCSIN和其他最先进的方法,这些实验涵盖了广泛的合成网络和真实网络。实验表明,LPOCSIN在恢复地面真值簇方面明显优于其他方法,同时比最有效的最先进方法快一个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Highly Efficient Mining of Overlapping Clusters in Signed Weighted Networks
In many practical contexts, networks are weighted as their links are assigned numerical weights representing relationship strengths or intensities of inter-node interaction. Moreover, the links' weight can be positive or negative, depending on the relationship or interaction between the connected nodes. The existing methods for network clustering however are not ideal for handling very large signed weighted networks. In this paper, we present a novel method called LPOCSIN (short for "Linear Programming based Overlapping Clustering on Signed Weighted Networks") for efficient mining of overlapping clusters in signed weighted networks. Different from existing methods that rely on computationally expensive cluster cohesiveness measures, LPOCSIN utilizes a simple yet effective one. Using this measure, we transform the cluster assignment problem into a series of alternating linear programs, and further propose a highly efficient procedure for solving those alternating problems. We evaluate LPOCSIN and other state-of-the-art methods by extensive experiments covering a wide range of synthetic and real networks. The experiments show that LPOCSIN significantly outperforms the other methods in recovering ground-truth clusters while being an order of magnitude faster than the most efficient state-of-the-art method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信