有理三奇点双民族模型的内嵌纳什问题

IF 0.4 Q4 MATHEMATICS
Bucsra Karadeniz, H. Mourtada, Camille Pl'enat, M. Tosun
{"title":"有理三奇点双民族模型的内嵌纳什问题","authors":"Bucsra Karadeniz, H. Mourtada, Camille Pl'enat, M. Tosun","doi":"10.5427/jsing.2020.22u","DOIUrl":null,"url":null,"abstract":"We consider the question whether one can construct an embedded resolution of singularities of a singular variety $X\\subset \\textbf{A}^n$ from the data of the irreducible components of the spaces of jets (of $X$) centered at the singular locus of $X.$ We show that the answer is no in general and that it is yes for some birational models of rational triple surface singularities.","PeriodicalId":44411,"journal":{"name":"Journal of Singularities","volume":"57 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2020-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The embedded Nash problem of birational models of rational triple singularities\",\"authors\":\"Bucsra Karadeniz, H. Mourtada, Camille Pl'enat, M. Tosun\",\"doi\":\"10.5427/jsing.2020.22u\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the question whether one can construct an embedded resolution of singularities of a singular variety $X\\\\subset \\\\textbf{A}^n$ from the data of the irreducible components of the spaces of jets (of $X$) centered at the singular locus of $X.$ We show that the answer is no in general and that it is yes for some birational models of rational triple surface singularities.\",\"PeriodicalId\":44411,\"journal\":{\"name\":\"Journal of Singularities\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Singularities\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5427/jsing.2020.22u\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Singularities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5427/jsing.2020.22u","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

我们考虑是否可以从以奇异轨迹$X.$为中心的($X$)射流空间的不可约分量的数据中构造奇异变异$X\subset \textbf{A}^n$的嵌入分辨率的问题。我们表明,一般情况下,答案是否定的,而对于一些有理三曲面奇点的二元模型,答案是肯定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The embedded Nash problem of birational models of rational triple singularities
We consider the question whether one can construct an embedded resolution of singularities of a singular variety $X\subset \textbf{A}^n$ from the data of the irreducible components of the spaces of jets (of $X$) centered at the singular locus of $X.$ We show that the answer is no in general and that it is yes for some birational models of rational triple surface singularities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
28
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信