Jed Liu, Michael D. George, K. Vikram, Xin Qi, Lucas Waye, A. Myers
{"title":"Fabric:一个安全的分布式计算和存储平台","authors":"Jed Liu, Michael D. George, K. Vikram, Xin Qi, Lucas Waye, A. Myers","doi":"10.1145/1629575.1629606","DOIUrl":null,"url":null,"abstract":"Fabric is a new system and language for building secure distributed information systems. It is a decentralized system that allows heterogeneous network nodes to securely share both information and computation resources despite mutual distrust. Its high-level programming language makes distribution and persistence largely transparent to programmers. Fabric supports data-shipping and function-shipping styles of computation: both computation and information can move between nodes to meet security requirements or to improve performance. Fabric provides a rich, Java-like object model, but data resources are labeled with confidentiality and integrity policies that are enforced through a combination of compile-time and run-time mechanisms. Optimistic, nested transactions ensure consistency across all objects and nodes. A peer-to-peer dissemination layer helps to increase availability and to balance load. Results from applications built using Fabric suggest that Fabric has a clean, concise programming model, offers good performance, and enforces security.","PeriodicalId":20672,"journal":{"name":"Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles","volume":"38 1","pages":"321-334"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"172","resultStr":"{\"title\":\"Fabric: a platform for secure distributed computation and storage\",\"authors\":\"Jed Liu, Michael D. George, K. Vikram, Xin Qi, Lucas Waye, A. Myers\",\"doi\":\"10.1145/1629575.1629606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fabric is a new system and language for building secure distributed information systems. It is a decentralized system that allows heterogeneous network nodes to securely share both information and computation resources despite mutual distrust. Its high-level programming language makes distribution and persistence largely transparent to programmers. Fabric supports data-shipping and function-shipping styles of computation: both computation and information can move between nodes to meet security requirements or to improve performance. Fabric provides a rich, Java-like object model, but data resources are labeled with confidentiality and integrity policies that are enforced through a combination of compile-time and run-time mechanisms. Optimistic, nested transactions ensure consistency across all objects and nodes. A peer-to-peer dissemination layer helps to increase availability and to balance load. Results from applications built using Fabric suggest that Fabric has a clean, concise programming model, offers good performance, and enforces security.\",\"PeriodicalId\":20672,\"journal\":{\"name\":\"Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles\",\"volume\":\"38 1\",\"pages\":\"321-334\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"172\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1629575.1629606\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1629575.1629606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fabric: a platform for secure distributed computation and storage
Fabric is a new system and language for building secure distributed information systems. It is a decentralized system that allows heterogeneous network nodes to securely share both information and computation resources despite mutual distrust. Its high-level programming language makes distribution and persistence largely transparent to programmers. Fabric supports data-shipping and function-shipping styles of computation: both computation and information can move between nodes to meet security requirements or to improve performance. Fabric provides a rich, Java-like object model, but data resources are labeled with confidentiality and integrity policies that are enforced through a combination of compile-time and run-time mechanisms. Optimistic, nested transactions ensure consistency across all objects and nodes. A peer-to-peer dissemination layer helps to increase availability and to balance load. Results from applications built using Fabric suggest that Fabric has a clean, concise programming model, offers good performance, and enforces security.