基于某些格罗滕迪克群体

IF 0.1 Q4 MATHEMATICS
G. Lusztig
{"title":"基于某些格罗滕迪克群体","authors":"G. Lusztig","doi":"10.21915/bimas.2023201","DOIUrl":null,"url":null,"abstract":"In a previous paper we have defined a second basis of the Grothendieck group of a split reductive group over a finite field. In this paper we extend this to the case of nonsplit special orthogonal groups.","PeriodicalId":43960,"journal":{"name":"Bulletin of the Institute of Mathematics Academia Sinica New Series","volume":"9 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2022-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On bases of certain Grothendieck groups\",\"authors\":\"G. Lusztig\",\"doi\":\"10.21915/bimas.2023201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a previous paper we have defined a second basis of the Grothendieck group of a split reductive group over a finite field. In this paper we extend this to the case of nonsplit special orthogonal groups.\",\"PeriodicalId\":43960,\"journal\":{\"name\":\"Bulletin of the Institute of Mathematics Academia Sinica New Series\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2022-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Institute of Mathematics Academia Sinica New Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21915/bimas.2023201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Institute of Mathematics Academia Sinica New Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21915/bimas.2023201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

在前一篇文章中,我们定义了有限域上分裂约群的Grothendieck群的第二基。本文将此推广到非分裂的特殊正交群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On bases of certain Grothendieck groups
In a previous paper we have defined a second basis of the Grothendieck group of a split reductive group over a finite field. In this paper we extend this to the case of nonsplit special orthogonal groups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
50.00%
发文量
14
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信