{"title":"在一些拉格朗日颤振的Chow环上","authors":"R. Laterveer","doi":"10.36045/j.bbms.200318","DOIUrl":null,"url":null,"abstract":"Let $X$ be a hyperk\\\"ahler variety admitting a Lagrangian fibration. Beauville's\"splitting property\"conjecture predicts that fibres of the Lagrangian fibration should have a particular behaviour in the Chow ring of $X$. We study this conjectural behaviour for two very classical examples of Lagrangian fibrations.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the Chow ring of some Lagrangian fibrations\",\"authors\":\"R. Laterveer\",\"doi\":\"10.36045/j.bbms.200318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $X$ be a hyperk\\\\\\\"ahler variety admitting a Lagrangian fibration. Beauville's\\\"splitting property\\\"conjecture predicts that fibres of the Lagrangian fibration should have a particular behaviour in the Chow ring of $X$. We study this conjectural behaviour for two very classical examples of Lagrangian fibrations.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.36045/j.bbms.200318\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.36045/j.bbms.200318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Let $X$ be a hyperk\"ahler variety admitting a Lagrangian fibration. Beauville's"splitting property"conjecture predicts that fibres of the Lagrangian fibration should have a particular behaviour in the Chow ring of $X$. We study this conjectural behaviour for two very classical examples of Lagrangian fibrations.