含不连续函数集上若干条件良定问题解的稳定性界

S.L. Logunov
{"title":"含不连续函数集上若干条件良定问题解的稳定性界","authors":"S.L. Logunov","doi":"10.1016/0041-5553(90)90102-X","DOIUrl":null,"url":null,"abstract":"<div><p>Stability bounds for the solutions of conditionally well-posed problems for the case when the variation and the maximum absolute value of the solutions are bounded by known constants are derived. Differentiation problems, Volterra and Abel integral equations, and convolution equations are considered.</p></div>","PeriodicalId":101271,"journal":{"name":"USSR Computational Mathematics and Mathematical Physics","volume":"30 6","pages":"Pages 1-9"},"PeriodicalIF":0.0000,"publicationDate":"1990-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0041-5553(90)90102-X","citationCount":"0","resultStr":"{\"title\":\"Stability bounds for solutions of some conditionally well-posed problems on a set containing discontinuous functions\",\"authors\":\"S.L. Logunov\",\"doi\":\"10.1016/0041-5553(90)90102-X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Stability bounds for the solutions of conditionally well-posed problems for the case when the variation and the maximum absolute value of the solutions are bounded by known constants are derived. Differentiation problems, Volterra and Abel integral equations, and convolution equations are considered.</p></div>\",\"PeriodicalId\":101271,\"journal\":{\"name\":\"USSR Computational Mathematics and Mathematical Physics\",\"volume\":\"30 6\",\"pages\":\"Pages 1-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0041-5553(90)90102-X\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"USSR Computational Mathematics and Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/004155539090102X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"USSR Computational Mathematics and Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/004155539090102X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

导出了当解的变分和最大绝对值以已知常数为界时,条件良定问题解的稳定性界。考虑了微分问题、Volterra和Abel积分方程以及卷积方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability bounds for solutions of some conditionally well-posed problems on a set containing discontinuous functions

Stability bounds for the solutions of conditionally well-posed problems for the case when the variation and the maximum absolute value of the solutions are bounded by known constants are derived. Differentiation problems, Volterra and Abel integral equations, and convolution equations are considered.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信