拉普拉斯方程的合形导数与分数阶傅立叶级数解

R. Pashaei, M. Asgari, A. Pishkoo
{"title":"拉普拉斯方程的合形导数与分数阶傅立叶级数解","authors":"R. Pashaei, M. Asgari, A. Pishkoo","doi":"10.21467/ias.9.1.1-7","DOIUrl":null,"url":null,"abstract":"In this paper the solution of conformable Laplace equation, \\frac{\\partial^{\\alpha}u(x,y)}{\\partial x^{\\alpha}}+ \\frac{\\partial^{\\alpha}u(x,y)}{\\partial y^{\\alpha}}=0, where 1 < α ≤ 2 has been deduced by using fractional fourier series and separation of variables method. For special cases α =2 (Laplace's equation), α=1.9, and α=1.8 conformable fractional fourier coefficients have been calculated. To calculate coefficients, integrals are of type \"conformable fractional integral\".","PeriodicalId":52800,"journal":{"name":"International Journal of Science Annals","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Conformable Derivatives in Laplace Equation and Fractional Fourier Series Solution\",\"authors\":\"R. Pashaei, M. Asgari, A. Pishkoo\",\"doi\":\"10.21467/ias.9.1.1-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper the solution of conformable Laplace equation, \\\\frac{\\\\partial^{\\\\alpha}u(x,y)}{\\\\partial x^{\\\\alpha}}+ \\\\frac{\\\\partial^{\\\\alpha}u(x,y)}{\\\\partial y^{\\\\alpha}}=0, where 1 < α ≤ 2 has been deduced by using fractional fourier series and separation of variables method. For special cases α =2 (Laplace's equation), α=1.9, and α=1.8 conformable fractional fourier coefficients have been calculated. To calculate coefficients, integrals are of type \\\"conformable fractional integral\\\".\",\"PeriodicalId\":52800,\"journal\":{\"name\":\"International Journal of Science Annals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Science Annals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21467/ias.9.1.1-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Science Annals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21467/ias.9.1.1-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文利用分数阶傅立叶级数和分离变量法,导出了1 < α≤2的适形拉普拉斯方程\frac{\partial^{\alpha}u(x,y)}{\partial x^{\alpha}} + \frac{\partial^{\alpha}u(x,y)}{\partial y^{\alpha}} =0的解。对于α= 2(拉普拉斯方程)、α=1.9和α=1.8的特殊情况,计算了符合的分数傅立叶系数。为了计算系数,积分采用“适形分数积分”类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Conformable Derivatives in Laplace Equation and Fractional Fourier Series Solution
In this paper the solution of conformable Laplace equation, \frac{\partial^{\alpha}u(x,y)}{\partial x^{\alpha}}+ \frac{\partial^{\alpha}u(x,y)}{\partial y^{\alpha}}=0, where 1 < α ≤ 2 has been deduced by using fractional fourier series and separation of variables method. For special cases α =2 (Laplace's equation), α=1.9, and α=1.8 conformable fractional fourier coefficients have been calculated. To calculate coefficients, integrals are of type "conformable fractional integral".
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
3 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信