{"title":"寒冷时期斯匹茨卑尔根(斯瓦尔巴群岛)地区极端地表气温的一些形成模式","authors":"I. A. Ilyushchenkova, A. Korzhikov, B. Ivanov","doi":"10.30758/0555-2648-2023-69-2-141-156","DOIUrl":null,"url":null,"abstract":"The article presents research findings of meteorological conditions during the formation of extreme surface air temperature (SAT) in the cold period from October to May in the Barentsburg area, the Spitzbergen (Svalbard) archipelago. Six extremely cold periods and six extremely warm periods for the weather sequence from 1912 to 2022 are considered. Correlation coefficients of extreme SAT in Barentsburg with extreme SAT in the points of Longyearbyen, Hornsund, Isfjord Radio, Pyramiden, Nu-Alesund, located in the west of Spitzbergen (Svalbard), were calculated. Also, characteristics of atmospheric circulation at the surface level, the level of the geopotential surface 500 hPa and 700 hPa and air temperature anomalies are analyzed, the results of comparing atmospheric circulation indices NAO and AO in the formation of extreme SAT are presented. Characteristic localizations of the polar vortex were found during the formation of negative and positive anomalies of SAT. For cold periods with extremely low temperatures, the localization of the polar vortex in the northeast of the Kara Sea and Severnaya Zemlya archipelago is observed. At the surface level the baric trough from the Atlantic depression is shifted to the coast of Scandinavia and the southern part of the Barents Sea. The Svalbard region is under the influence of the periphery of the anticyclonic field over the Arctic basin, Greenland, over the western Arctic Seas, conditions are formed for the deviation of SAT by 3–4 degrees below normal. In the case of extremely high SAT, the polar vortex is shifted to the eastern part of the Canadian Arctic Archipelago and the Baffin Sea. At the surface level, the baric trough from the Icelandic depression develops over the Greenland, Norwegian and Barents Seas, which leads to the moving of warm air masses from the Atlantic to polar latitudes and the formation of average SAT in the Spitzbergen (Svalbard) region above long-term values by 1–2 degrees. The estimates of macroprocesses obtained can be used for preparing long-term forecasts for the northern polar region and detailing them for the Spitzbergen (Svalbard) region.","PeriodicalId":8391,"journal":{"name":"Arctic, Antarctic, and Alpine Research","volume":"27 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some patterns of formation of extreme surface air temperature in the area of the Spitzbergen (Svalbard) archipelago during the cold period\",\"authors\":\"I. A. Ilyushchenkova, A. Korzhikov, B. Ivanov\",\"doi\":\"10.30758/0555-2648-2023-69-2-141-156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article presents research findings of meteorological conditions during the formation of extreme surface air temperature (SAT) in the cold period from October to May in the Barentsburg area, the Spitzbergen (Svalbard) archipelago. Six extremely cold periods and six extremely warm periods for the weather sequence from 1912 to 2022 are considered. Correlation coefficients of extreme SAT in Barentsburg with extreme SAT in the points of Longyearbyen, Hornsund, Isfjord Radio, Pyramiden, Nu-Alesund, located in the west of Spitzbergen (Svalbard), were calculated. Also, characteristics of atmospheric circulation at the surface level, the level of the geopotential surface 500 hPa and 700 hPa and air temperature anomalies are analyzed, the results of comparing atmospheric circulation indices NAO and AO in the formation of extreme SAT are presented. Characteristic localizations of the polar vortex were found during the formation of negative and positive anomalies of SAT. For cold periods with extremely low temperatures, the localization of the polar vortex in the northeast of the Kara Sea and Severnaya Zemlya archipelago is observed. At the surface level the baric trough from the Atlantic depression is shifted to the coast of Scandinavia and the southern part of the Barents Sea. The Svalbard region is under the influence of the periphery of the anticyclonic field over the Arctic basin, Greenland, over the western Arctic Seas, conditions are formed for the deviation of SAT by 3–4 degrees below normal. In the case of extremely high SAT, the polar vortex is shifted to the eastern part of the Canadian Arctic Archipelago and the Baffin Sea. At the surface level, the baric trough from the Icelandic depression develops over the Greenland, Norwegian and Barents Seas, which leads to the moving of warm air masses from the Atlantic to polar latitudes and the formation of average SAT in the Spitzbergen (Svalbard) region above long-term values by 1–2 degrees. The estimates of macroprocesses obtained can be used for preparing long-term forecasts for the northern polar region and detailing them for the Spitzbergen (Svalbard) region.\",\"PeriodicalId\":8391,\"journal\":{\"name\":\"Arctic, Antarctic, and Alpine Research\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arctic, Antarctic, and Alpine Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.30758/0555-2648-2023-69-2-141-156\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arctic, Antarctic, and Alpine Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.30758/0555-2648-2023-69-2-141-156","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Some patterns of formation of extreme surface air temperature in the area of the Spitzbergen (Svalbard) archipelago during the cold period
The article presents research findings of meteorological conditions during the formation of extreme surface air temperature (SAT) in the cold period from October to May in the Barentsburg area, the Spitzbergen (Svalbard) archipelago. Six extremely cold periods and six extremely warm periods for the weather sequence from 1912 to 2022 are considered. Correlation coefficients of extreme SAT in Barentsburg with extreme SAT in the points of Longyearbyen, Hornsund, Isfjord Radio, Pyramiden, Nu-Alesund, located in the west of Spitzbergen (Svalbard), were calculated. Also, characteristics of atmospheric circulation at the surface level, the level of the geopotential surface 500 hPa and 700 hPa and air temperature anomalies are analyzed, the results of comparing atmospheric circulation indices NAO and AO in the formation of extreme SAT are presented. Characteristic localizations of the polar vortex were found during the formation of negative and positive anomalies of SAT. For cold periods with extremely low temperatures, the localization of the polar vortex in the northeast of the Kara Sea and Severnaya Zemlya archipelago is observed. At the surface level the baric trough from the Atlantic depression is shifted to the coast of Scandinavia and the southern part of the Barents Sea. The Svalbard region is under the influence of the periphery of the anticyclonic field over the Arctic basin, Greenland, over the western Arctic Seas, conditions are formed for the deviation of SAT by 3–4 degrees below normal. In the case of extremely high SAT, the polar vortex is shifted to the eastern part of the Canadian Arctic Archipelago and the Baffin Sea. At the surface level, the baric trough from the Icelandic depression develops over the Greenland, Norwegian and Barents Seas, which leads to the moving of warm air masses from the Atlantic to polar latitudes and the formation of average SAT in the Spitzbergen (Svalbard) region above long-term values by 1–2 degrees. The estimates of macroprocesses obtained can be used for preparing long-term forecasts for the northern polar region and detailing them for the Spitzbergen (Svalbard) region.
期刊介绍:
The mission of Arctic, Antarctic, and Alpine Research (AAAR) is to advance understanding of cold region environments by publishing original scientific research from past, present and future high-latitude and mountain regions. Rapid environmental change occurring in cold regions today highlights the global importance of this research. AAAR publishes peer-reviewed interdisciplinary papers including original research papers, short communications and review articles. Many of these papers synthesize a variety of disciplines including ecology, climatology, geomorphology, glaciology, hydrology, paleoceanography, biogeochemistry, and social science. Papers may be uni- or multidisciplinary but should have interdisciplinary appeal. Special thematic issues and proceedings are encouraged. The journal receives contributions from a diverse group of international authors from academia, government agencies, and land managers. In addition the journal publishes opinion pieces, book reviews and in memoria. AAAR is associated with the Institute of Arctic and Alpine Research (INSTAAR) the oldest active research institute at the University of Colorado Boulder.