随机环境下超临界分支过程的极限定理

D. Buraczewski, E. Damek
{"title":"随机环境下超临界分支过程的极限定理","authors":"D. Buraczewski, E. Damek","doi":"10.3150/21-bej1349","DOIUrl":null,"url":null,"abstract":"We consider the branching process in random environment $\\{Z_n\\}_{n\\geq 0}$, which is a~population growth process where individuals reproduce independently of each other with the reproduction law randomly picked at each generation. We focus on the supercritical case, when the process survives with positive probability and grows exponentially fast on the nonextinction set. Using Fourier techniques we obtain Edgeworth expansions and the renewal theorem for the sequence $\\{\\log Z_n\\}_{n\\ge 0}$ as well as we essentially improve the central limit theorem. Our strategy is to compare $\\log Z_n$ with partial sums of i.i.d. random variables in order to obtain precise estimates.","PeriodicalId":8470,"journal":{"name":"arXiv: Probability","volume":"62 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Limit theorems for supercritical branching processes in random environment\",\"authors\":\"D. Buraczewski, E. Damek\",\"doi\":\"10.3150/21-bej1349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the branching process in random environment $\\\\{Z_n\\\\}_{n\\\\geq 0}$, which is a~population growth process where individuals reproduce independently of each other with the reproduction law randomly picked at each generation. We focus on the supercritical case, when the process survives with positive probability and grows exponentially fast on the nonextinction set. Using Fourier techniques we obtain Edgeworth expansions and the renewal theorem for the sequence $\\\\{\\\\log Z_n\\\\}_{n\\\\ge 0}$ as well as we essentially improve the central limit theorem. Our strategy is to compare $\\\\log Z_n$ with partial sums of i.i.d. random variables in order to obtain precise estimates.\",\"PeriodicalId\":8470,\"journal\":{\"name\":\"arXiv: Probability\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3150/21-bej1349\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3150/21-bej1349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑随机环境下的分支过程$\{Z_n\}_{n\geq 0}$,这是一个种群生长过程,个体相互独立繁殖,繁殖规律在每一代随机选择。我们关注的是超临界情况,即过程在非消光集上以正概率存活并以指数速度增长。利用傅里叶技术我们得到了Edgeworth展开式和序列$\{\log Z_n\}_{n\ge 0}$的更新定理同时我们也改进了中心极限定理。我们的策略是将$\log Z_n$与i.i.d随机变量的部分和进行比较,以获得精确的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Limit theorems for supercritical branching processes in random environment
We consider the branching process in random environment $\{Z_n\}_{n\geq 0}$, which is a~population growth process where individuals reproduce independently of each other with the reproduction law randomly picked at each generation. We focus on the supercritical case, when the process survives with positive probability and grows exponentially fast on the nonextinction set. Using Fourier techniques we obtain Edgeworth expansions and the renewal theorem for the sequence $\{\log Z_n\}_{n\ge 0}$ as well as we essentially improve the central limit theorem. Our strategy is to compare $\log Z_n$ with partial sums of i.i.d. random variables in order to obtain precise estimates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信