美国汽车修理行业的一篮子市场分析

IF 1.7 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Hilde Patron, Laureano Gomez
{"title":"美国汽车修理行业的一篮子市场分析","authors":"Hilde Patron, Laureano Gomez","doi":"10.1080/2573234x.2020.1838958","DOIUrl":null,"url":null,"abstract":"ABSTRACT Market basket analysis (MBA), or the mining of transactional data to uncover association rules, is a popular methodology used in managerial decision making. MBA is centered around three key parameters: support, confidence, and lift, and the choice of starting values for these parameters can have a significant impact on the results of the analysis. We develop a procedure in R around the Apriori algorithm to help in identifying lift maximising rules when the support covers a specified proportion. The procedure facilitates the choice of minimum parameters, eliminates redundancies, and organizes the resulting association rules into actionable formats. When applied to the US auto repair data, we find un-exploited bundling packages that can be added to the scheduled maintenance services of traditional marketing campaigns.","PeriodicalId":36417,"journal":{"name":"Journal of Business Analytics","volume":"9 1","pages":"79 - 92"},"PeriodicalIF":1.7000,"publicationDate":"2020-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A market basket analysis of the US auto-repair industry\",\"authors\":\"Hilde Patron, Laureano Gomez\",\"doi\":\"10.1080/2573234x.2020.1838958\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Market basket analysis (MBA), or the mining of transactional data to uncover association rules, is a popular methodology used in managerial decision making. MBA is centered around three key parameters: support, confidence, and lift, and the choice of starting values for these parameters can have a significant impact on the results of the analysis. We develop a procedure in R around the Apriori algorithm to help in identifying lift maximising rules when the support covers a specified proportion. The procedure facilitates the choice of minimum parameters, eliminates redundancies, and organizes the resulting association rules into actionable formats. When applied to the US auto repair data, we find un-exploited bundling packages that can be added to the scheduled maintenance services of traditional marketing campaigns.\",\"PeriodicalId\":36417,\"journal\":{\"name\":\"Journal of Business Analytics\",\"volume\":\"9 1\",\"pages\":\"79 - 92\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2020-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Business Analytics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/2573234x.2020.1838958\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Business Analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/2573234x.2020.1838958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 4

摘要

市场篮子分析(MBA),或挖掘交易数据以发现关联规则,是一种用于管理决策的流行方法。MBA围绕着三个关键参数:支持、信心和提升,这些参数的起始值的选择会对分析结果产生重大影响。我们在R中围绕Apriori算法开发了一个过程,以帮助识别支撑覆盖特定比例时的升力最大化规则。该过程有助于选择最小参数,消除冗余,并将产生的关联规则组织为可操作的格式。当应用于美国汽车维修数据时,我们发现未开发的捆绑包可以添加到传统营销活动的定期维护服务中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A market basket analysis of the US auto-repair industry
ABSTRACT Market basket analysis (MBA), or the mining of transactional data to uncover association rules, is a popular methodology used in managerial decision making. MBA is centered around three key parameters: support, confidence, and lift, and the choice of starting values for these parameters can have a significant impact on the results of the analysis. We develop a procedure in R around the Apriori algorithm to help in identifying lift maximising rules when the support covers a specified proportion. The procedure facilitates the choice of minimum parameters, eliminates redundancies, and organizes the resulting association rules into actionable formats. When applied to the US auto repair data, we find un-exploited bundling packages that can be added to the scheduled maintenance services of traditional marketing campaigns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Business Analytics
Journal of Business Analytics Business, Management and Accounting-Management Information Systems
CiteScore
2.50
自引率
0.00%
发文量
13
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信