{"title":"45W q波段空间合格行波管的研制","authors":"B. Qu, X. Liang, C. Guo, Y. Shang, J. Feng","doi":"10.4172/2325-9833.1000170","DOIUrl":null,"url":null,"abstract":"Beijing Vacuum Electronics Research Institute (BVERI) has developed a series of Ka band space traveling wave tubes (TWTs) with saturation power of 12-100 W and efficiency of 55-63% for data transmission and communication for both conduction and radiation cooling. Recently Q-band space TWTs with conduction-cooled and space qualified are developed which are capable of delivering over 45W saturated RF power with overall efficiency exceeding 45%. This paper gives the main technical characteristics of Q-band space TWTs’ design, performances and qualification tests over 5.5 GHz bandwidth.","PeriodicalId":44634,"journal":{"name":"SAE International Journal of Passenger Cars-Electronic and Electrical Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of 45W Q-band Space Qualified TWTs\",\"authors\":\"B. Qu, X. Liang, C. Guo, Y. Shang, J. Feng\",\"doi\":\"10.4172/2325-9833.1000170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Beijing Vacuum Electronics Research Institute (BVERI) has developed a series of Ka band space traveling wave tubes (TWTs) with saturation power of 12-100 W and efficiency of 55-63% for data transmission and communication for both conduction and radiation cooling. Recently Q-band space TWTs with conduction-cooled and space qualified are developed which are capable of delivering over 45W saturated RF power with overall efficiency exceeding 45%. This paper gives the main technical characteristics of Q-band space TWTs’ design, performances and qualification tests over 5.5 GHz bandwidth.\",\"PeriodicalId\":44634,\"journal\":{\"name\":\"SAE International Journal of Passenger Cars-Electronic and Electrical Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SAE International Journal of Passenger Cars-Electronic and Electrical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2325-9833.1000170\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAE International Journal of Passenger Cars-Electronic and Electrical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2325-9833.1000170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
Beijing Vacuum Electronics Research Institute (BVERI) has developed a series of Ka band space traveling wave tubes (TWTs) with saturation power of 12-100 W and efficiency of 55-63% for data transmission and communication for both conduction and radiation cooling. Recently Q-band space TWTs with conduction-cooled and space qualified are developed which are capable of delivering over 45W saturated RF power with overall efficiency exceeding 45%. This paper gives the main technical characteristics of Q-band space TWTs’ design, performances and qualification tests over 5.5 GHz bandwidth.