Z. Zhang, Bo-Cheng Lin, Xinglin Zeng, H. Elsayed-Ali
{"title":"激光过热Pb(111)和Pb(100)的表面形貌","authors":"Z. Zhang, Bo-Cheng Lin, Xinglin Zeng, H. Elsayed-Ali","doi":"10.1103/PHYSREVB.57.9262","DOIUrl":null,"url":null,"abstract":"Superheating of solids is rarely observed due to the presence of a thin disordered surface layer formed below the melting point, Tm, which provides a nucleation site for melting. Premelting is particularly evident in open surfaces. While Pb(110) disorders at a temperature as low as 150 K below Tm = 600.7 K, Pb(111) remains ordered up to Tm - 0.05 K. [1]. Some surfaces that do not premelt can superheat under certain conditions [2-4], Superheating of Pb(111) and Bi(0001), and some superheating of Pb(100) by ~180 ps laser pulses was observed in time-resolved high-energy electron diffraction (RHEED) experiments [2-4], The Pb(111) and Bi(0001) surfaces superheat up to ~120 K and ~90 K above Tm of Pb and Bi, respectively. Evidence of residual order on Pb(100) up to ~15 K above Tm was also observed [3], Molecular dynamics simulations of surface melting of several fee metals showed a good agreement with the experimentally observed superheating of Pb(111) [5], One simulation showed that cooperative movement of the superheated surface atoms results in the filling of vacancies and the surface becomes atomically flat by a superheating surface repair process [5], This annealing mechanism was attributed to the high vibrational amplitudes which atoms are forced into by the ultrafast superheating pulse.","PeriodicalId":10610,"journal":{"name":"Conference on Lasers and Electro-Optics Europe","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"1998-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Surface Morphology of Laser Superheated Pb(111) and Pb(100)\",\"authors\":\"Z. Zhang, Bo-Cheng Lin, Xinglin Zeng, H. Elsayed-Ali\",\"doi\":\"10.1103/PHYSREVB.57.9262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Superheating of solids is rarely observed due to the presence of a thin disordered surface layer formed below the melting point, Tm, which provides a nucleation site for melting. Premelting is particularly evident in open surfaces. While Pb(110) disorders at a temperature as low as 150 K below Tm = 600.7 K, Pb(111) remains ordered up to Tm - 0.05 K. [1]. Some surfaces that do not premelt can superheat under certain conditions [2-4], Superheating of Pb(111) and Bi(0001), and some superheating of Pb(100) by ~180 ps laser pulses was observed in time-resolved high-energy electron diffraction (RHEED) experiments [2-4], The Pb(111) and Bi(0001) surfaces superheat up to ~120 K and ~90 K above Tm of Pb and Bi, respectively. Evidence of residual order on Pb(100) up to ~15 K above Tm was also observed [3], Molecular dynamics simulations of surface melting of several fee metals showed a good agreement with the experimentally observed superheating of Pb(111) [5], One simulation showed that cooperative movement of the superheated surface atoms results in the filling of vacancies and the surface becomes atomically flat by a superheating surface repair process [5], This annealing mechanism was attributed to the high vibrational amplitudes which atoms are forced into by the ultrafast superheating pulse.\",\"PeriodicalId\":10610,\"journal\":{\"name\":\"Conference on Lasers and Electro-Optics Europe\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference on Lasers and Electro-Optics Europe\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PHYSREVB.57.9262\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Lasers and Electro-Optics Europe","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVB.57.9262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Surface Morphology of Laser Superheated Pb(111) and Pb(100)
Superheating of solids is rarely observed due to the presence of a thin disordered surface layer formed below the melting point, Tm, which provides a nucleation site for melting. Premelting is particularly evident in open surfaces. While Pb(110) disorders at a temperature as low as 150 K below Tm = 600.7 K, Pb(111) remains ordered up to Tm - 0.05 K. [1]. Some surfaces that do not premelt can superheat under certain conditions [2-4], Superheating of Pb(111) and Bi(0001), and some superheating of Pb(100) by ~180 ps laser pulses was observed in time-resolved high-energy electron diffraction (RHEED) experiments [2-4], The Pb(111) and Bi(0001) surfaces superheat up to ~120 K and ~90 K above Tm of Pb and Bi, respectively. Evidence of residual order on Pb(100) up to ~15 K above Tm was also observed [3], Molecular dynamics simulations of surface melting of several fee metals showed a good agreement with the experimentally observed superheating of Pb(111) [5], One simulation showed that cooperative movement of the superheated surface atoms results in the filling of vacancies and the surface becomes atomically flat by a superheating surface repair process [5], This annealing mechanism was attributed to the high vibrational amplitudes which atoms are forced into by the ultrafast superheating pulse.