谐振腔中真空的波泛函

IF 0.5 4区 物理与天体物理 Q4 PHYSICS, MULTIDISCIPLINARY
Alexander Friedrich, D. Moll, M. Freyberger, L. Plimak, W. Schleich
{"title":"谐振腔中真空的波泛函","authors":"Alexander Friedrich, D. Moll, M. Freyberger, L. Plimak, W. Schleich","doi":"10.12693/APhysPolA.143.S52","DOIUrl":null,"url":null,"abstract":"We show that despite the fundamentally different situations, the wave functional of the vacuum in a resonator is identical to that of free space. The infinite product of Gaussian ground state wave functions defining the wave functional of the vacuum translates into an exponential of a sum rather than an integral over the squares of mode amplitudes weighted by the mode volume and a power of the mode wave number. We express this sum by an integral of a bilinear form of the field containing a kernel given by a function of the square root of the negative Laplacian acting on a transverse delta function. For transverse fields it suffices to employ the familiar delta function which allows us to obtain explicit expressions for the kernels of the vector potential, the electric field and the magnetic induction. We show for the example of the vector potential that different mode expansions lead to different kernels. Lastly, we show that the kernels have a close relationship with the Wightman correlation functions of the fields.","PeriodicalId":7164,"journal":{"name":"Acta Physica Polonica A","volume":"24 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Wave Functional of the Vacuum in a Resonator\",\"authors\":\"Alexander Friedrich, D. Moll, M. Freyberger, L. Plimak, W. Schleich\",\"doi\":\"10.12693/APhysPolA.143.S52\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that despite the fundamentally different situations, the wave functional of the vacuum in a resonator is identical to that of free space. The infinite product of Gaussian ground state wave functions defining the wave functional of the vacuum translates into an exponential of a sum rather than an integral over the squares of mode amplitudes weighted by the mode volume and a power of the mode wave number. We express this sum by an integral of a bilinear form of the field containing a kernel given by a function of the square root of the negative Laplacian acting on a transverse delta function. For transverse fields it suffices to employ the familiar delta function which allows us to obtain explicit expressions for the kernels of the vector potential, the electric field and the magnetic induction. We show for the example of the vector potential that different mode expansions lead to different kernels. Lastly, we show that the kernels have a close relationship with the Wightman correlation functions of the fields.\",\"PeriodicalId\":7164,\"journal\":{\"name\":\"Acta Physica Polonica A\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Physica Polonica A\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.12693/APhysPolA.143.S52\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Physica Polonica A","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.12693/APhysPolA.143.S52","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们表明,尽管有根本不同的情况,谐振腔中真空的波泛函与自由空间的波泛函相同。定义真空波泛函的高斯基态波函数的无穷积转换成一个和的指数,而不是模态体积加权模态振幅平方的积分和模态波数的幂。我们用双线性形式的场的积分来表示这个和,这个场包含一个核,这个核是由负拉普拉斯函数的平方根函数给出的,作用于横向函数。对于横向场,使用熟悉的函数就足够了,它使我们能够得到矢量势、电场和磁感应的显式表达式。对于向量势的例子,我们表明不同的模态展开导致不同的核。最后,我们证明了核函数与场的Wightman相关函数有密切的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Wave Functional of the Vacuum in a Resonator
We show that despite the fundamentally different situations, the wave functional of the vacuum in a resonator is identical to that of free space. The infinite product of Gaussian ground state wave functions defining the wave functional of the vacuum translates into an exponential of a sum rather than an integral over the squares of mode amplitudes weighted by the mode volume and a power of the mode wave number. We express this sum by an integral of a bilinear form of the field containing a kernel given by a function of the square root of the negative Laplacian acting on a transverse delta function. For transverse fields it suffices to employ the familiar delta function which allows us to obtain explicit expressions for the kernels of the vector potential, the electric field and the magnetic induction. We show for the example of the vector potential that different mode expansions lead to different kernels. Lastly, we show that the kernels have a close relationship with the Wightman correlation functions of the fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Physica Polonica A
Acta Physica Polonica A 物理-物理:综合
CiteScore
1.50
自引率
0.00%
发文量
141
审稿时长
6 months
期刊介绍: Contributions which report original research results and reviews in the fields of General Physics, Atomic and Molecular Physics, Optics and Quantum Optics, Quantum Information, Biophysics, Condensed Matter, and Applied Physics are welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信