非平稳条件下鞅中心极限定理的收敛速率

IF 1.5 Q2 PHYSICS, MATHEMATICAL
J. Dedecker, F. Merlevède, E. Rio
{"title":"非平稳条件下鞅中心极限定理的收敛速率","authors":"J. Dedecker, F. Merlevède, E. Rio","doi":"10.1214/21-aihp1182","DOIUrl":null,"url":null,"abstract":"In this paper, we give rates of convergence, for minimal distances and for the uniform distance, between the law of partial sums of martingale differences and thelimiting Gaussian distribution. More precisely, denoting by $P_{X}$ the law of a random variable $X$ and by $G_{a}$ the normal distribution ${\\mathcal N} (0,a)$, we are interested by giving quantitative estimates for the convergence of $P_{S_n/\\sqrt{V_n}}$ to $G_1$, where $S_n$ is the partial sum associated with either martingale differences sequences or more general dependent sequences, and $V_n= {\\rm Var}(S_n)$. Applications to linear statistics, non stationary $\\rho$-mixing sequences and sequential dynamical systems are given.","PeriodicalId":42884,"journal":{"name":"Annales de l Institut Henri Poincare D","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2021-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Rates of convergence in the central limit theorem for martingales in the non stationary setting\",\"authors\":\"J. Dedecker, F. Merlevède, E. Rio\",\"doi\":\"10.1214/21-aihp1182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we give rates of convergence, for minimal distances and for the uniform distance, between the law of partial sums of martingale differences and thelimiting Gaussian distribution. More precisely, denoting by $P_{X}$ the law of a random variable $X$ and by $G_{a}$ the normal distribution ${\\\\mathcal N} (0,a)$, we are interested by giving quantitative estimates for the convergence of $P_{S_n/\\\\sqrt{V_n}}$ to $G_1$, where $S_n$ is the partial sum associated with either martingale differences sequences or more general dependent sequences, and $V_n= {\\\\rm Var}(S_n)$. Applications to linear statistics, non stationary $\\\\rho$-mixing sequences and sequential dynamical systems are given.\",\"PeriodicalId\":42884,\"journal\":{\"name\":\"Annales de l Institut Henri Poincare D\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales de l Institut Henri Poincare D\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/21-aihp1182\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales de l Institut Henri Poincare D","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/21-aihp1182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 8

摘要

在本文中,我们给出了鞅差分部分和定律与极限高斯分布在最小距离和均匀距离下的收敛速率。更准确地说,用$P_{X}$表示随机变量定律$X$,用$G_{a}$表示正态分布${\mathcal N} (0,a)$,我们感兴趣的是给出$P_{S_n/\sqrt{V_n}}$到$G_1$收敛的定量估计,其中$S_n$是与鞅差序列或更一般的相关序列相关的部分和,以及$V_n= {\rm Var}(S_n)$。给出了在线性统计、非平稳$\rho$混合序列和顺序动力系统中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rates of convergence in the central limit theorem for martingales in the non stationary setting
In this paper, we give rates of convergence, for minimal distances and for the uniform distance, between the law of partial sums of martingale differences and thelimiting Gaussian distribution. More precisely, denoting by $P_{X}$ the law of a random variable $X$ and by $G_{a}$ the normal distribution ${\mathcal N} (0,a)$, we are interested by giving quantitative estimates for the convergence of $P_{S_n/\sqrt{V_n}}$ to $G_1$, where $S_n$ is the partial sum associated with either martingale differences sequences or more general dependent sequences, and $V_n= {\rm Var}(S_n)$. Applications to linear statistics, non stationary $\rho$-mixing sequences and sequential dynamical systems are given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
16
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信