控制Fokker-Planck和Liouville-von Neumann方程的模型简化

IF 1 Q3 Engineering
P. Benner, T. Breiten, C. Hartmann, B. Schmidt
{"title":"控制Fokker-Planck和Liouville-von Neumann方程的模型简化","authors":"P. Benner, T. Breiten, C. Hartmann, B. Schmidt","doi":"10.3934/jcd.2020001","DOIUrl":null,"url":null,"abstract":"Model reduction methods for bilinear control systems are compared by means of practical examples of Liouville-von Neumann and Fokker--Planck type. Methods based on balancing generalized system Gramians and on minimizing an H2-type cost functional are considered. The focus is on the numerical implementation and a thorough comparison of the methods. Structure and stability preservation are investigated, and the competitiveness of the approaches is shown for practically relevant, large-scale examples.","PeriodicalId":37526,"journal":{"name":"Journal of Computational Dynamics","volume":"10 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2017-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Model reduction of controlled Fokker–Planck and Liouville–von Neumann equations\",\"authors\":\"P. Benner, T. Breiten, C. Hartmann, B. Schmidt\",\"doi\":\"10.3934/jcd.2020001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Model reduction methods for bilinear control systems are compared by means of practical examples of Liouville-von Neumann and Fokker--Planck type. Methods based on balancing generalized system Gramians and on minimizing an H2-type cost functional are considered. The focus is on the numerical implementation and a thorough comparison of the methods. Structure and stability preservation are investigated, and the competitiveness of the approaches is shown for practically relevant, large-scale examples.\",\"PeriodicalId\":37526,\"journal\":{\"name\":\"Journal of Computational Dynamics\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2017-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/jcd.2020001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/jcd.2020001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

摘要

通过刘维尔-冯-诺伊曼型和福克-普朗克型的实例,比较了双线性控制系统的模型约简方法。考虑了基于平衡广义系统格律和最小化h2型代价泛函的方法。重点是数值实现和方法的全面比较。对结构和稳定性保持进行了研究,并在实际相关的大型实例中证明了这些方法的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model reduction of controlled Fokker–Planck and Liouville–von Neumann equations
Model reduction methods for bilinear control systems are compared by means of practical examples of Liouville-von Neumann and Fokker--Planck type. Methods based on balancing generalized system Gramians and on minimizing an H2-type cost functional are considered. The focus is on the numerical implementation and a thorough comparison of the methods. Structure and stability preservation are investigated, and the competitiveness of the approaches is shown for practically relevant, large-scale examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Dynamics
Journal of Computational Dynamics Engineering-Computational Mechanics
CiteScore
2.30
自引率
10.00%
发文量
31
期刊介绍: JCD is focused on the intersection of computation with deterministic and stochastic dynamics. The mission of the journal is to publish papers that explore new computational methods for analyzing dynamic problems or use novel dynamical methods to improve computation. The subject matter of JCD includes both fundamental mathematical contributions and applications to problems from science and engineering. A non-exhaustive list of topics includes * Computation of phase-space structures and bifurcations * Multi-time-scale methods * Structure-preserving integration * Nonlinear and stochastic model reduction * Set-valued numerical techniques * Network and distributed dynamics JCD includes both original research and survey papers that give a detailed and illuminating treatment of an important area of current interest. The editorial board of JCD consists of world-leading researchers from mathematics, engineering, and science, all of whom are experts in both computational methods and the theory of dynamical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信