轴转速对气隔磁液密封密封性能的影响

Hujun Wang
{"title":"轴转速对气隔磁液密封密封性能的影响","authors":"Hujun Wang","doi":"10.3233/jcm-226651","DOIUrl":null,"url":null,"abstract":"When applied to seal liquid, magnetic fluid seal was prone to failure with the increase of shaft speed because of instability at the interface of these two fluids caused by shaft rotation. In order to avoid this problem, a new type of magnetic fluid seal was proposed, in which the magnetic fluid was separated from the sealed liquid by gas. The sealing principle of the structure was studied. Gas-liquid two-phase flow in the structure was simulated by computational fluid dynamics. A test rig of magnetic fluid seal with gas isolation was set up. Experiments of pressure resistance and seal durability of the original structure and structure with gas isolation for sealing water were carried out on the test bench. The results of theoretical analysis, CFD and experiments indicated that: there was no obvious relationship between shaft speed and performance of magnetic fluid seal when gas isolation was added for sealing water. Its pressure resistance was almost the same as that of the structure sealing gas. Its seal durability was significantly longer.","PeriodicalId":14668,"journal":{"name":"J. Comput. Methods Sci. Eng.","volume":"40 1","pages":"1125-1134"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effect of shaft speed on performance of magnetic fluid seal with gas isolation for sealing water\",\"authors\":\"Hujun Wang\",\"doi\":\"10.3233/jcm-226651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When applied to seal liquid, magnetic fluid seal was prone to failure with the increase of shaft speed because of instability at the interface of these two fluids caused by shaft rotation. In order to avoid this problem, a new type of magnetic fluid seal was proposed, in which the magnetic fluid was separated from the sealed liquid by gas. The sealing principle of the structure was studied. Gas-liquid two-phase flow in the structure was simulated by computational fluid dynamics. A test rig of magnetic fluid seal with gas isolation was set up. Experiments of pressure resistance and seal durability of the original structure and structure with gas isolation for sealing water were carried out on the test bench. The results of theoretical analysis, CFD and experiments indicated that: there was no obvious relationship between shaft speed and performance of magnetic fluid seal when gas isolation was added for sealing water. Its pressure resistance was almost the same as that of the structure sealing gas. Its seal durability was significantly longer.\",\"PeriodicalId\":14668,\"journal\":{\"name\":\"J. Comput. Methods Sci. Eng.\",\"volume\":\"40 1\",\"pages\":\"1125-1134\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Comput. Methods Sci. Eng.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/jcm-226651\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Comput. Methods Sci. Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jcm-226651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

当应用于密封液体时,随着轴转速的增加,由于轴的旋转引起两种流体的界面不稳定,磁性流体密封容易失效。为了避免这一问题,提出了一种新型的磁流体密封,磁流体通过气体与被密封液体分离。研究了该结构的密封原理。采用计算流体力学方法对结构内气液两相流动进行了模拟。建立了磁流体密封气体隔离试验台。在试验台上进行了原结构和隔气封水结构的耐压性和密封耐久性试验。理论分析、CFD和实验结果表明:加气隔离封水时,轴速与磁流体密封性能无明显关系。其耐压性能与结构密封气体的耐压性能基本一致。其密封耐久性明显延长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of shaft speed on performance of magnetic fluid seal with gas isolation for sealing water
When applied to seal liquid, magnetic fluid seal was prone to failure with the increase of shaft speed because of instability at the interface of these two fluids caused by shaft rotation. In order to avoid this problem, a new type of magnetic fluid seal was proposed, in which the magnetic fluid was separated from the sealed liquid by gas. The sealing principle of the structure was studied. Gas-liquid two-phase flow in the structure was simulated by computational fluid dynamics. A test rig of magnetic fluid seal with gas isolation was set up. Experiments of pressure resistance and seal durability of the original structure and structure with gas isolation for sealing water were carried out on the test bench. The results of theoretical analysis, CFD and experiments indicated that: there was no obvious relationship between shaft speed and performance of magnetic fluid seal when gas isolation was added for sealing water. Its pressure resistance was almost the same as that of the structure sealing gas. Its seal durability was significantly longer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信