基于深度神经网络的动态流体表面重建

Simron Thapa, Nianyi Li, Jinwei Ye
{"title":"基于深度神经网络的动态流体表面重建","authors":"Simron Thapa, Nianyi Li, Jinwei Ye","doi":"10.1109/cvpr42600.2020.00010","DOIUrl":null,"url":null,"abstract":"Recovering the dynamic fluid surface is a long-standing challenging problem in computer vision. Most existing image-based methods require multiple views or a dedicated imaging system. Here we present a learning-based single-image approach for 3D fluid surface reconstruction. Specifically, we design a deep neural network that estimates the depth and normal maps of a fluid surface by analyzing the refractive distortion of a reference background image. Due to the dynamic nature of fluid surfaces, our network uses recurrent layers that carry temporal information from previous frames to achieve spatio-temporally consistent reconstruction given a video input. Due to the lack of fluid data, we synthesize a large fluid dataset using physics-based fluid modeling and rendering techniques for network training and validation. Through experiments on simulated and real captured fluid images, we demonstrate that our proposed deep neural network trained on our fluid dataset can recover dynamic 3D fluid surfaces with high accuracy.","PeriodicalId":6715,"journal":{"name":"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"28 1","pages":"21-30"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Dynamic Fluid Surface Reconstruction Using Deep Neural Network\",\"authors\":\"Simron Thapa, Nianyi Li, Jinwei Ye\",\"doi\":\"10.1109/cvpr42600.2020.00010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recovering the dynamic fluid surface is a long-standing challenging problem in computer vision. Most existing image-based methods require multiple views or a dedicated imaging system. Here we present a learning-based single-image approach for 3D fluid surface reconstruction. Specifically, we design a deep neural network that estimates the depth and normal maps of a fluid surface by analyzing the refractive distortion of a reference background image. Due to the dynamic nature of fluid surfaces, our network uses recurrent layers that carry temporal information from previous frames to achieve spatio-temporally consistent reconstruction given a video input. Due to the lack of fluid data, we synthesize a large fluid dataset using physics-based fluid modeling and rendering techniques for network training and validation. Through experiments on simulated and real captured fluid images, we demonstrate that our proposed deep neural network trained on our fluid dataset can recover dynamic 3D fluid surfaces with high accuracy.\",\"PeriodicalId\":6715,\"journal\":{\"name\":\"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"28 1\",\"pages\":\"21-30\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/cvpr42600.2020.00010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/cvpr42600.2020.00010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

动态流体表面的恢复是计算机视觉领域一个长期存在的难题。大多数现有的基于图像的方法需要多个视图或专用的成像系统。本文提出了一种基于学习的单图像三维流体表面重建方法。具体来说,我们设计了一个深度神经网络,通过分析参考背景图像的折射畸变来估计流体表面的深度和法线映射。由于流体表面的动态性,我们的网络使用循环层,这些层携带来自前一帧的时间信息,以实现给定视频输入的时空一致重建。由于缺乏流体数据,我们使用基于物理的流体建模和渲染技术合成了一个大型流体数据集,用于网络训练和验证。通过模拟和真实捕获的流体图像的实验,我们证明了我们所提出的深度神经网络在我们的流体数据集上训练可以高精度地恢复动态三维流体表面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic Fluid Surface Reconstruction Using Deep Neural Network
Recovering the dynamic fluid surface is a long-standing challenging problem in computer vision. Most existing image-based methods require multiple views or a dedicated imaging system. Here we present a learning-based single-image approach for 3D fluid surface reconstruction. Specifically, we design a deep neural network that estimates the depth and normal maps of a fluid surface by analyzing the refractive distortion of a reference background image. Due to the dynamic nature of fluid surfaces, our network uses recurrent layers that carry temporal information from previous frames to achieve spatio-temporally consistent reconstruction given a video input. Due to the lack of fluid data, we synthesize a large fluid dataset using physics-based fluid modeling and rendering techniques for network training and validation. Through experiments on simulated and real captured fluid images, we demonstrate that our proposed deep neural network trained on our fluid dataset can recover dynamic 3D fluid surfaces with high accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信