具有无限循环类群的Krull模群的弹性

Pub Date : 2021-11-01 DOI:10.1216/jca.2021.13.449
X. Zeng, Guixin Deng
{"title":"具有无限循环类群的Krull模群的弹性","authors":"X. Zeng, Guixin Deng","doi":"10.1216/jca.2021.13.449","DOIUrl":null,"url":null,"abstract":"Let H be a Krull monoid with infinite cyclic class group G that we identify with Z. Let GP ⊆ G denote the set of classes containing prime divisors. It was shown that ρ(H), the elasticity of H, is finite if and only if GP is bounded above or below. By a result of Lambert, it is easy to show that ρ(H) ≤ min{− inf(GP ), sup(GP )}. In this paper, we focus on H with large elasticity. When GP is infinite but bounded above or below, we give necessary and sufficient conditions for that ρ(H) > min{− inf(GP ), sup(GP )} − 3/2. When GP is a finite set, we give a better upper bound on ρ(H), which is sharp in some sense.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Elasticities of Krull monoids with infinite cyclic class group\",\"authors\":\"X. Zeng, Guixin Deng\",\"doi\":\"10.1216/jca.2021.13.449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let H be a Krull monoid with infinite cyclic class group G that we identify with Z. Let GP ⊆ G denote the set of classes containing prime divisors. It was shown that ρ(H), the elasticity of H, is finite if and only if GP is bounded above or below. By a result of Lambert, it is easy to show that ρ(H) ≤ min{− inf(GP ), sup(GP )}. In this paper, we focus on H with large elasticity. When GP is infinite but bounded above or below, we give necessary and sufficient conditions for that ρ(H) > min{− inf(GP ), sup(GP )} − 3/2. When GP is a finite set, we give a better upper bound on ρ(H), which is sharp in some sense.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1216/jca.2021.13.449\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1216/jca.2021.13.449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

设H为一个具有与z恒等式的无限循环类群G的Krull单拟子,设GP≤G表示含有素数因子的类的集合。证明了ρ(H), H的弹性,当且仅当GP有界时是有限的。利用朗伯特的结果,很容易证明ρ(H)≤min{−inf(GP), sup(GP)}。本文主要研究具有大弹性的H。当GP是无限但上下有界时,给出了ρ(H) > min{−inf(GP), sup(GP)}−3/2的充分必要条件。当GP是有限集时,我们给出了一个更好的ρ(H)上界,它在某种意义上是尖锐的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Elasticities of Krull monoids with infinite cyclic class group
Let H be a Krull monoid with infinite cyclic class group G that we identify with Z. Let GP ⊆ G denote the set of classes containing prime divisors. It was shown that ρ(H), the elasticity of H, is finite if and only if GP is bounded above or below. By a result of Lambert, it is easy to show that ρ(H) ≤ min{− inf(GP ), sup(GP )}. In this paper, we focus on H with large elasticity. When GP is infinite but bounded above or below, we give necessary and sufficient conditions for that ρ(H) > min{− inf(GP ), sup(GP )} − 3/2. When GP is a finite set, we give a better upper bound on ρ(H), which is sharp in some sense.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信