{"title":"两变量无分离连接分离逻辑的表达完备性","authors":"Stephane Demri, Morgan Deters","doi":"10.1145/2603088.2603142","DOIUrl":null,"url":null,"abstract":"We show that first-order separation logic with one record field restricted to two variables and the separating implication (no separating conjunction) is as expressive as weak second-order logic, substantially sharpening a previous result. Capturing weak second-order logic with such a restricted form of separation logic requires substantial updates to known proof techniques. We develop these, and as a by-product identify the smallest fragment of separation logic known to be undecidable: first-order separation logic with one record field, two variables, and no separating conjunction.","PeriodicalId":20649,"journal":{"name":"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Expressive completeness of separation logic with two variables and no separating conjunction\",\"authors\":\"Stephane Demri, Morgan Deters\",\"doi\":\"10.1145/2603088.2603142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that first-order separation logic with one record field restricted to two variables and the separating implication (no separating conjunction) is as expressive as weak second-order logic, substantially sharpening a previous result. Capturing weak second-order logic with such a restricted form of separation logic requires substantial updates to known proof techniques. We develop these, and as a by-product identify the smallest fragment of separation logic known to be undecidable: first-order separation logic with one record field, two variables, and no separating conjunction.\",\"PeriodicalId\":20649,\"journal\":{\"name\":\"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2603088.2603142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2603088.2603142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Expressive completeness of separation logic with two variables and no separating conjunction
We show that first-order separation logic with one record field restricted to two variables and the separating implication (no separating conjunction) is as expressive as weak second-order logic, substantially sharpening a previous result. Capturing weak second-order logic with such a restricted form of separation logic requires substantial updates to known proof techniques. We develop these, and as a by-product identify the smallest fragment of separation logic known to be undecidable: first-order separation logic with one record field, two variables, and no separating conjunction.