统计-构造和地质统计方法在估算沙舍梅斑岩铜矿单轴抗压强度参数三维分布中的性能评价

Q4 Earth and Planetary Sciences
Mahboubeh Pishbin, N. Fathianpour
{"title":"统计-构造和地质统计方法在估算沙舍梅斑岩铜矿单轴抗压强度参数三维分布中的性能评价","authors":"Mahboubeh Pishbin, N. Fathianpour","doi":"10.22059/IJMGE.2014.51804","DOIUrl":null,"url":null,"abstract":"The uniaxial compressive strength (UCS) of intact rocks is an important geotechnical parameter required for designing geotechnical and mining engineering projects. Obtaining accurate estimates of the rock mass UCS parameter throughout a 3D geological model of the deposit is vital for determining optimum rock slope stability, designing new exploratory and blast boreholes, mine planning, optimizing the production schedule and even designing the crusher’s feed size. The main objective of this paper is to select the preferred estimator of the UCS parameter based on accuracy performance using all the available geological-geotechnical data at the Sarcheshmeh copper deposit, located 160 km southwest of Kerman City, in south-eastern Iran. In this paper, an attempt is made to estimate the spatial distribution of the UCS parameter using commonly-used statistical-structural and geostatistical methods. In order to achieve the aim of the current study, the UCS parameter was measured along with other qualitative geological properties, including the rock type, weathering, alteration type and intensity of core samples taken from 647 boreholes. The 3D distribution of the UCS parameter is obtained using different algorithms including statistical-structural (the nearest-neighbour technique), linear (ordinary Kriging) and nonlinear (indicator Kriging) geostatistical methods. After estimating the UCS parameter at block centres using the above-mentioned methods, the performance of each method is compared and validated through 21 set aside borehole data. The assessment of selecting best estimator of UCS parameter is based on scatter plots of the observed versus estimated data plus the root mean square error (RMSE) statistics of the differences between observed and estimated values for 21 set aside borehole data. Finally, due to the special characteristics of the UCS spatial variability, it is concluded that the nearest-neighbour method is the most appropriate method for estimating the UCS parameter in porphyry copper deposits.","PeriodicalId":36564,"journal":{"name":"International Journal of Mining and Geo-Engineering","volume":"11 1","pages":"11-30"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Assessing the Performance of Statistical-structural and Geostatistical Methods in Estimating the 3D Distribution of the Uniaxial Compressive Strength Parameter in the Sarcheshmeh Porphyry Copper Deposit\",\"authors\":\"Mahboubeh Pishbin, N. Fathianpour\",\"doi\":\"10.22059/IJMGE.2014.51804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The uniaxial compressive strength (UCS) of intact rocks is an important geotechnical parameter required for designing geotechnical and mining engineering projects. Obtaining accurate estimates of the rock mass UCS parameter throughout a 3D geological model of the deposit is vital for determining optimum rock slope stability, designing new exploratory and blast boreholes, mine planning, optimizing the production schedule and even designing the crusher’s feed size. The main objective of this paper is to select the preferred estimator of the UCS parameter based on accuracy performance using all the available geological-geotechnical data at the Sarcheshmeh copper deposit, located 160 km southwest of Kerman City, in south-eastern Iran. In this paper, an attempt is made to estimate the spatial distribution of the UCS parameter using commonly-used statistical-structural and geostatistical methods. In order to achieve the aim of the current study, the UCS parameter was measured along with other qualitative geological properties, including the rock type, weathering, alteration type and intensity of core samples taken from 647 boreholes. The 3D distribution of the UCS parameter is obtained using different algorithms including statistical-structural (the nearest-neighbour technique), linear (ordinary Kriging) and nonlinear (indicator Kriging) geostatistical methods. After estimating the UCS parameter at block centres using the above-mentioned methods, the performance of each method is compared and validated through 21 set aside borehole data. The assessment of selecting best estimator of UCS parameter is based on scatter plots of the observed versus estimated data plus the root mean square error (RMSE) statistics of the differences between observed and estimated values for 21 set aside borehole data. Finally, due to the special characteristics of the UCS spatial variability, it is concluded that the nearest-neighbour method is the most appropriate method for estimating the UCS parameter in porphyry copper deposits.\",\"PeriodicalId\":36564,\"journal\":{\"name\":\"International Journal of Mining and Geo-Engineering\",\"volume\":\"11 1\",\"pages\":\"11-30\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mining and Geo-Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22059/IJMGE.2014.51804\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mining and Geo-Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22059/IJMGE.2014.51804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 4

摘要

完整岩石的单轴抗压强度是岩土工程和矿山工程设计所需的重要岩土参数。在矿床的三维地质模型中获得岩体UCS参数的准确估计对于确定最佳岩质边坡稳定性,设计新的勘探和爆破钻孔,矿山规划,优化生产计划甚至设计破碎机的进料尺寸至关重要。本文的主要目的是利用位于伊朗东南部克尔曼市西南160公里处的Sarcheshmeh铜矿所有可用的地质-岩土工程数据,根据精度性能选择优选的UCS参数估计器。本文尝试用常用的统计结构和地统计方法来估计UCS参数的空间分布。为了实现本研究的目的,测量了UCS参数以及其他定性地质性质,包括岩石类型,风化,蚀变类型和强度,取自647个钻孔的岩心样品。利用统计结构(最近邻法)、线性(普通克里格法)和非线性(指示克里格法)等不同的地质统计方法获得了UCS参数的三维分布。在使用上述方法估计区块中心的UCS参数后,通过21个备用井眼数据对每种方法的性能进行了比较和验证。选择最佳UCS参数估计值的评估是基于观测数据与估计数据的散点图,加上21个井眼数据的观测值与估计值之间差异的均方根误差(RMSE)统计。最后,基于斑岩型铜矿床单轴波动参数空间变异性的特殊特征,认为最近邻法是估计斑岩型铜矿床单轴波动参数最合适的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessing the Performance of Statistical-structural and Geostatistical Methods in Estimating the 3D Distribution of the Uniaxial Compressive Strength Parameter in the Sarcheshmeh Porphyry Copper Deposit
The uniaxial compressive strength (UCS) of intact rocks is an important geotechnical parameter required for designing geotechnical and mining engineering projects. Obtaining accurate estimates of the rock mass UCS parameter throughout a 3D geological model of the deposit is vital for determining optimum rock slope stability, designing new exploratory and blast boreholes, mine planning, optimizing the production schedule and even designing the crusher’s feed size. The main objective of this paper is to select the preferred estimator of the UCS parameter based on accuracy performance using all the available geological-geotechnical data at the Sarcheshmeh copper deposit, located 160 km southwest of Kerman City, in south-eastern Iran. In this paper, an attempt is made to estimate the spatial distribution of the UCS parameter using commonly-used statistical-structural and geostatistical methods. In order to achieve the aim of the current study, the UCS parameter was measured along with other qualitative geological properties, including the rock type, weathering, alteration type and intensity of core samples taken from 647 boreholes. The 3D distribution of the UCS parameter is obtained using different algorithms including statistical-structural (the nearest-neighbour technique), linear (ordinary Kriging) and nonlinear (indicator Kriging) geostatistical methods. After estimating the UCS parameter at block centres using the above-mentioned methods, the performance of each method is compared and validated through 21 set aside borehole data. The assessment of selecting best estimator of UCS parameter is based on scatter plots of the observed versus estimated data plus the root mean square error (RMSE) statistics of the differences between observed and estimated values for 21 set aside borehole data. Finally, due to the special characteristics of the UCS spatial variability, it is concluded that the nearest-neighbour method is the most appropriate method for estimating the UCS parameter in porphyry copper deposits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Mining and Geo-Engineering
International Journal of Mining and Geo-Engineering Earth and Planetary Sciences-Geotechnical Engineering and Engineering Geology
CiteScore
0.80
自引率
0.00%
发文量
0
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信