{"title":"改进基于多类boosting的目标检测","authors":"J. M. Buenaposada, L. Baumela","doi":"10.3233/ica-200636","DOIUrl":null,"url":null,"abstract":"In recent years we have witnessed significant progress in the performance of object detection in images. This advance stems from the use of rich discriminative features produced by deep models and the adoption of new training techniques. Although these techniques have been extensively used in the mainstream deep learning-based models, it is still an open issue to analyze their impact in alternative, and computationally more efficient, ensemble-based approaches. In this paper we evaluate the impact of the adoption of data augmentation, bounding box refinement and multi-scale processing in the context of multi-class Boosting-based object detection. In our experiments we show that use of these training advancements significantly improves the object detection performance.","PeriodicalId":50358,"journal":{"name":"Integrated Computer-Aided Engineering","volume":"27 1","pages":"81-96"},"PeriodicalIF":5.3000,"publicationDate":"2020-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Improving multi-class Boosting-based object detection\",\"authors\":\"J. M. Buenaposada, L. Baumela\",\"doi\":\"10.3233/ica-200636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years we have witnessed significant progress in the performance of object detection in images. This advance stems from the use of rich discriminative features produced by deep models and the adoption of new training techniques. Although these techniques have been extensively used in the mainstream deep learning-based models, it is still an open issue to analyze their impact in alternative, and computationally more efficient, ensemble-based approaches. In this paper we evaluate the impact of the adoption of data augmentation, bounding box refinement and multi-scale processing in the context of multi-class Boosting-based object detection. In our experiments we show that use of these training advancements significantly improves the object detection performance.\",\"PeriodicalId\":50358,\"journal\":{\"name\":\"Integrated Computer-Aided Engineering\",\"volume\":\"27 1\",\"pages\":\"81-96\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2020-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integrated Computer-Aided Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3233/ica-200636\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrated Computer-Aided Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/ica-200636","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
In recent years we have witnessed significant progress in the performance of object detection in images. This advance stems from the use of rich discriminative features produced by deep models and the adoption of new training techniques. Although these techniques have been extensively used in the mainstream deep learning-based models, it is still an open issue to analyze their impact in alternative, and computationally more efficient, ensemble-based approaches. In this paper we evaluate the impact of the adoption of data augmentation, bounding box refinement and multi-scale processing in the context of multi-class Boosting-based object detection. In our experiments we show that use of these training advancements significantly improves the object detection performance.
期刊介绍:
Integrated Computer-Aided Engineering (ICAE) was founded in 1993. "Based on the premise that interdisciplinary thinking and synergistic collaboration of disciplines can solve complex problems, open new frontiers, and lead to true innovations and breakthroughs, the cornerstone of industrial competitiveness and advancement of the society" as noted in the inaugural issue of the journal.
The focus of ICAE is the integration of leading edge and emerging computer and information technologies for innovative solution of engineering problems. The journal fosters interdisciplinary research and presents a unique forum for innovative computer-aided engineering. It also publishes novel industrial applications of CAE, thus helping to bring new computational paradigms from research labs and classrooms to reality. Areas covered by the journal include (but are not limited to) artificial intelligence, advanced signal processing, biologically inspired computing, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, intelligent and adaptive systems, internet-based technologies, knowledge discovery and engineering, machine learning, mechatronics, mobile computing, multimedia technologies, networking, neural network computing, object-oriented systems, optimization and search, parallel processing, robotics virtual reality, and visualization techniques.