平面图的Gromov双曲性

A. Cantón, A. Granados, D. Pestana, José M. Rodríguez
{"title":"平面图的Gromov双曲性","authors":"A. Cantón, A. Granados, D. Pestana, José M. Rodríguez","doi":"10.2478/s11533-013-0286-9","DOIUrl":null,"url":null,"abstract":"We prove that under appropriate assumptions adding or removing an infinite amount of edges to a given planar graph preserves its non-hyperbolicity, a result which is shown to be false in general. In particular, we make a conjecture that every tessellation graph of ℝ2 with convex tiles is non-hyperbolic; it is shown that in order to prove this conjecture it suffices to consider tessellation graphs of ℝ2 such that every tile is a triangle and a partial answer to this question is given. A weaker version of this conjecture stating that every tessellation graph of ℝ2 with rectangular tiles is non-hyperbolic is given and partially answered. If this conjecture were true, many tessellation graphs of ℝ2 with tiles which are parallelograms would be non-hyperbolic.","PeriodicalId":50988,"journal":{"name":"Central European Journal of Mathematics","volume":"45 1","pages":"1817-1830"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Gromov hyperbolicity of planar graphs\",\"authors\":\"A. Cantón, A. Granados, D. Pestana, José M. Rodríguez\",\"doi\":\"10.2478/s11533-013-0286-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that under appropriate assumptions adding or removing an infinite amount of edges to a given planar graph preserves its non-hyperbolicity, a result which is shown to be false in general. In particular, we make a conjecture that every tessellation graph of ℝ2 with convex tiles is non-hyperbolic; it is shown that in order to prove this conjecture it suffices to consider tessellation graphs of ℝ2 such that every tile is a triangle and a partial answer to this question is given. A weaker version of this conjecture stating that every tessellation graph of ℝ2 with rectangular tiles is non-hyperbolic is given and partially answered. If this conjecture were true, many tessellation graphs of ℝ2 with tiles which are parallelograms would be non-hyperbolic.\",\"PeriodicalId\":50988,\"journal\":{\"name\":\"Central European Journal of Mathematics\",\"volume\":\"45 1\",\"pages\":\"1817-1830\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Central European Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/s11533-013-0286-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central European Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/s11533-013-0286-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

我们证明了在适当的假设下,在给定的平面图上添加或删除无限数量的边可以保持其非双曲性,这一结果通常是错误的。特别地,我们提出了一个猜想,即每一个具有凸块的曲面图都是非双曲的;为了证明这一猜想,我们充分考虑了让每个方格都是三角形的曲面图,并给出了这个问题的部分答案。给出了这个猜想的一个较弱的版本,即每个具有矩形瓦片的曲面图都是非双曲的。如果这个猜想是正确的,那么许多具有平行四边形瓷砖的曲面图将是非双曲的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gromov hyperbolicity of planar graphs
We prove that under appropriate assumptions adding or removing an infinite amount of edges to a given planar graph preserves its non-hyperbolicity, a result which is shown to be false in general. In particular, we make a conjecture that every tessellation graph of ℝ2 with convex tiles is non-hyperbolic; it is shown that in order to prove this conjecture it suffices to consider tessellation graphs of ℝ2 such that every tile is a triangle and a partial answer to this question is given. A weaker version of this conjecture stating that every tessellation graph of ℝ2 with rectangular tiles is non-hyperbolic is given and partially answered. If this conjecture were true, many tessellation graphs of ℝ2 with tiles which are parallelograms would be non-hyperbolic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
3-8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信