涉及Atangana-Baleanu分数算子的非局部杂化积分微分方程

IF 0.7 Q2 MATHEMATICS
Saleh Alshammari, Mohammad Alshammari, Mohammed S Abdo
{"title":"涉及Atangana-Baleanu分数算子的非局部杂化积分微分方程","authors":"Saleh Alshammari, Mohammad Alshammari, Mohammed S Abdo","doi":"10.1155/2023/5891342","DOIUrl":null,"url":null,"abstract":"In this study, we develop a theory for the nonlocal hybrid boundary value problem for the fractional integro-differential equations featuring Atangana–Baleanu derivatives. The corresponding hybrid fractional integral equation is presented. Then, we establish the existence results using Dhage’s hybrid fixed point theorem for a sum of three operators. We also offer additional exceptional cases and similar outcomes. In order to demonstrate and verify the results, we provide an example as an application.","PeriodicalId":43667,"journal":{"name":"Muenster Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlocal Hybrid Integro-Differential Equations Involving Atangana–Baleanu Fractional Operators\",\"authors\":\"Saleh Alshammari, Mohammad Alshammari, Mohammed S Abdo\",\"doi\":\"10.1155/2023/5891342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we develop a theory for the nonlocal hybrid boundary value problem for the fractional integro-differential equations featuring Atangana–Baleanu derivatives. The corresponding hybrid fractional integral equation is presented. Then, we establish the existence results using Dhage’s hybrid fixed point theorem for a sum of three operators. We also offer additional exceptional cases and similar outcomes. In order to demonstrate and verify the results, we provide an example as an application.\",\"PeriodicalId\":43667,\"journal\":{\"name\":\"Muenster Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Muenster Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/5891342\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Muenster Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/5891342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了具有Atangana-Baleanu导数的分数阶积分微分方程的非局部混合边值问题。给出了相应的混合分数阶积分方程。然后,利用Dhage混合不动点定理,建立了三个算子和的存在性结果。我们还提供额外的例外情况和类似的结果。为了演示和验证结果,我们提供了一个示例作为应用程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlocal Hybrid Integro-Differential Equations Involving Atangana–Baleanu Fractional Operators
In this study, we develop a theory for the nonlocal hybrid boundary value problem for the fractional integro-differential equations featuring Atangana–Baleanu derivatives. The corresponding hybrid fractional integral equation is presented. Then, we establish the existence results using Dhage’s hybrid fixed point theorem for a sum of three operators. We also offer additional exceptional cases and similar outcomes. In order to demonstrate and verify the results, we provide an example as an application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信