Pri-EMO:一种保护隐私的通用摄动面部情绪识别方法

Yong Zeng, Zhenyu Zhang, Jiale Liu, Jianfeng Ma, Zhihong Liu
{"title":"Pri-EMO:一种保护隐私的通用摄动面部情绪识别方法","authors":"Yong Zeng,&nbsp;Zhenyu Zhang,&nbsp;Jiale Liu,&nbsp;Jianfeng Ma,&nbsp;Zhihong Liu","doi":"10.1016/j.jiixd.2023.08.001","DOIUrl":null,"url":null,"abstract":"<div><p>Facial emotion have great significance in human-computer interaction, virtual reality and people's communication. Existing methods for facial emotion privacy mainly concentrate on the perturbation of facial emotion images. However, cryptography-based perturbation algorithms are highly computationally expensive, and transformation-based perturbation algorithms only target specific recognition models. In this paper, we propose a universal feature vector-based privacy-preserving perturbation algorithm for facial emotion. Our method implements privacy-preserving facial emotion images on the feature space by computing tiny perturbations and adding them to the original images. In addition, the proposed algorithm can also enable expression images to be recognized as specific labels. Experiments show that the protection success rate of our method is above 95% and the image quality evaluation degrades no more than 0.003. The quantitative and qualitative results show that our proposed method has a balance between privacy and usability.</p></div>","PeriodicalId":100790,"journal":{"name":"Journal of Information and Intelligence","volume":"1 4","pages":"Pages 330-340"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949715923000513/pdfft?md5=6acd805c7dcedd8fb30cc2ecf57750e3&pid=1-s2.0-S2949715923000513-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Pri-EMO: A universal perturbation method for privacy preserving facial emotion recognition\",\"authors\":\"Yong Zeng,&nbsp;Zhenyu Zhang,&nbsp;Jiale Liu,&nbsp;Jianfeng Ma,&nbsp;Zhihong Liu\",\"doi\":\"10.1016/j.jiixd.2023.08.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Facial emotion have great significance in human-computer interaction, virtual reality and people's communication. Existing methods for facial emotion privacy mainly concentrate on the perturbation of facial emotion images. However, cryptography-based perturbation algorithms are highly computationally expensive, and transformation-based perturbation algorithms only target specific recognition models. In this paper, we propose a universal feature vector-based privacy-preserving perturbation algorithm for facial emotion. Our method implements privacy-preserving facial emotion images on the feature space by computing tiny perturbations and adding them to the original images. In addition, the proposed algorithm can also enable expression images to be recognized as specific labels. Experiments show that the protection success rate of our method is above 95% and the image quality evaluation degrades no more than 0.003. The quantitative and qualitative results show that our proposed method has a balance between privacy and usability.</p></div>\",\"PeriodicalId\":100790,\"journal\":{\"name\":\"Journal of Information and Intelligence\",\"volume\":\"1 4\",\"pages\":\"Pages 330-340\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2949715923000513/pdfft?md5=6acd805c7dcedd8fb30cc2ecf57750e3&pid=1-s2.0-S2949715923000513-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Information and Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949715923000513\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information and Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949715923000513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

面部情感在人机交互、虚拟现实和人与人之间的交流中具有重要意义。现有的面部情绪隐私方法主要集中在面部情绪图像的摄动上。然而,基于密码学的摄动算法计算成本很高,而基于变换的摄动算法只针对特定的识别模型。本文提出了一种通用的基于特征向量的面部情绪隐私保护摄动算法。我们的方法通过计算微小的扰动并将其添加到原始图像中,在特征空间上实现了隐私保护的面部情绪图像。此外,该算法还可以将表情图像识别为特定标签。实验表明,该方法的保护成功率在95%以上,图像质量评价下降不超过0.003。定量和定性结果表明,我们提出的方法在隐私性和可用性之间取得了平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pri-EMO: A universal perturbation method for privacy preserving facial emotion recognition

Facial emotion have great significance in human-computer interaction, virtual reality and people's communication. Existing methods for facial emotion privacy mainly concentrate on the perturbation of facial emotion images. However, cryptography-based perturbation algorithms are highly computationally expensive, and transformation-based perturbation algorithms only target specific recognition models. In this paper, we propose a universal feature vector-based privacy-preserving perturbation algorithm for facial emotion. Our method implements privacy-preserving facial emotion images on the feature space by computing tiny perturbations and adding them to the original images. In addition, the proposed algorithm can also enable expression images to be recognized as specific labels. Experiments show that the protection success rate of our method is above 95% and the image quality evaluation degrades no more than 0.003. The quantitative and qualitative results show that our proposed method has a balance between privacy and usability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信