单项式几乎完全交的合束和弱Lefschetz性质

Pub Date : 2021-06-01 DOI:10.1216/jca.2021.13.157
D. Cook, U. Nagel
{"title":"单项式几乎完全交的合束和弱Lefschetz性质","authors":"D. Cook, U. Nagel","doi":"10.1216/jca.2021.13.157","DOIUrl":null,"url":null,"abstract":"Deciding the presence of the weak Lefschetz property often is a challenging problem. Continuing studies of Brenner and Kaid (2007), Cook II and Nagel (2011) and Migliore, Miro-Roig, Murai and Nagel (2013) we carry out an in-depth study of Artinian monomial ideals with four generators in three variables. We use a connection to lozenge tilings to describe semistability of the syzygy bundle of such an ideal, to determine its generic splitting type, and to decide the presence of the weak Lefschetz property. We provide results in both characteristic zero and positive characteristic.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Syzygy bundles and the weak Lefschetz property of monomial almost complete intersections\",\"authors\":\"D. Cook, U. Nagel\",\"doi\":\"10.1216/jca.2021.13.157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deciding the presence of the weak Lefschetz property often is a challenging problem. Continuing studies of Brenner and Kaid (2007), Cook II and Nagel (2011) and Migliore, Miro-Roig, Murai and Nagel (2013) we carry out an in-depth study of Artinian monomial ideals with four generators in three variables. We use a connection to lozenge tilings to describe semistability of the syzygy bundle of such an ideal, to determine its generic splitting type, and to decide the presence of the weak Lefschetz property. We provide results in both characteristic zero and positive characteristic.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1216/jca.2021.13.157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1216/jca.2021.13.157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

确定弱Lefschetz性质的存在通常是一个具有挑战性的问题。在Brenner and Kaid(2007)、Cook II and Nagel(2011)以及Migliore、micro - roig、Murai and Nagel(2013)的研究基础上,我们对三个变量中的四个发生器的Artinian单项式理想进行了深入研究。我们利用菱形拼接的连接描述了这种理想的合束的半稳定性,确定了它的一般分裂类型,并确定了弱Lefschetz性质的存在。我们给出了特征零和正特征的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Syzygy bundles and the weak Lefschetz property of monomial almost complete intersections
Deciding the presence of the weak Lefschetz property often is a challenging problem. Continuing studies of Brenner and Kaid (2007), Cook II and Nagel (2011) and Migliore, Miro-Roig, Murai and Nagel (2013) we carry out an in-depth study of Artinian monomial ideals with four generators in three variables. We use a connection to lozenge tilings to describe semistability of the syzygy bundle of such an ideal, to determine its generic splitting type, and to decide the presence of the weak Lefschetz property. We provide results in both characteristic zero and positive characteristic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信