{"title":"Vimentin蛋白-蛋白相互作用及信号通路在正常细胞细胞调控、细胞形态和细胞分化中的研究进展","authors":"Danial Hashemi Karoii, Hossein Azizi","doi":"10.1080/10799893.2022.2047199","DOIUrl":null,"url":null,"abstract":"Abstract The Vimentin intermediate filament (VIF) is an essential cytoskeleton component. It shows dynamically changing expression patterns throughout various phases of the differentiation process, suggesting that the protein is physiologically important. Vimentin’s essential functions have recently been clear, so Vimentin-deficient of animals was described as a change of morphology and signaling pathway. Recent research has discovered many vital roles for Vimentin that were previously unknown. VIF emerges as an organizer of many essential proteins involved in movement and cell signaling. The highly dynamic and complicated phosphorylation of VIF seems to be a regulator mechanism for various activities. Changes in IF expression patterns are often linked with cancer progression, especially those leading to enhanced invasion and cellular migration. This review will discuss the function of Vimentin intermediate filaments in normal cell physiology, cell adhesion structures, cell shape, and signaling pathways. The genes interaction and gene network linked with Vimentin will be discussed in more studies. However, research aimed at understanding the function of Vimentin in different signaling cascades and gene interactions might offer novel methods for creating therapeutic medicines. Enrichr GEO datasets used gene ontology (GO) and pathway enrichment analyses. STRING online was used to predict the functional connections of proteins-proteins, followed by Cytoscape analysis to find the master genes. Cytoscape and STRING research revealed that eight genes, Fas, Casp8, Casp6, Fadd, Ripk1, Des, Tnnc2, and Tnnt3, were required for protein-protein interactions with Vimentin genes involved in cell differentiation.","PeriodicalId":16962,"journal":{"name":"Journal of Receptors and Signal Transduction","volume":"9 1","pages":"512 - 520"},"PeriodicalIF":2.6000,"publicationDate":"2022-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A review of protein-protein interaction and signaling pathway of Vimentin in cell regulation, morphology and cell differentiation in normal cells\",\"authors\":\"Danial Hashemi Karoii, Hossein Azizi\",\"doi\":\"10.1080/10799893.2022.2047199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The Vimentin intermediate filament (VIF) is an essential cytoskeleton component. It shows dynamically changing expression patterns throughout various phases of the differentiation process, suggesting that the protein is physiologically important. Vimentin’s essential functions have recently been clear, so Vimentin-deficient of animals was described as a change of morphology and signaling pathway. Recent research has discovered many vital roles for Vimentin that were previously unknown. VIF emerges as an organizer of many essential proteins involved in movement and cell signaling. The highly dynamic and complicated phosphorylation of VIF seems to be a regulator mechanism for various activities. Changes in IF expression patterns are often linked with cancer progression, especially those leading to enhanced invasion and cellular migration. This review will discuss the function of Vimentin intermediate filaments in normal cell physiology, cell adhesion structures, cell shape, and signaling pathways. The genes interaction and gene network linked with Vimentin will be discussed in more studies. However, research aimed at understanding the function of Vimentin in different signaling cascades and gene interactions might offer novel methods for creating therapeutic medicines. Enrichr GEO datasets used gene ontology (GO) and pathway enrichment analyses. STRING online was used to predict the functional connections of proteins-proteins, followed by Cytoscape analysis to find the master genes. Cytoscape and STRING research revealed that eight genes, Fas, Casp8, Casp6, Fadd, Ripk1, Des, Tnnc2, and Tnnt3, were required for protein-protein interactions with Vimentin genes involved in cell differentiation.\",\"PeriodicalId\":16962,\"journal\":{\"name\":\"Journal of Receptors and Signal Transduction\",\"volume\":\"9 1\",\"pages\":\"512 - 520\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2022-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Receptors and Signal Transduction\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/10799893.2022.2047199\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Receptors and Signal Transduction","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10799893.2022.2047199","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
A review of protein-protein interaction and signaling pathway of Vimentin in cell regulation, morphology and cell differentiation in normal cells
Abstract The Vimentin intermediate filament (VIF) is an essential cytoskeleton component. It shows dynamically changing expression patterns throughout various phases of the differentiation process, suggesting that the protein is physiologically important. Vimentin’s essential functions have recently been clear, so Vimentin-deficient of animals was described as a change of morphology and signaling pathway. Recent research has discovered many vital roles for Vimentin that were previously unknown. VIF emerges as an organizer of many essential proteins involved in movement and cell signaling. The highly dynamic and complicated phosphorylation of VIF seems to be a regulator mechanism for various activities. Changes in IF expression patterns are often linked with cancer progression, especially those leading to enhanced invasion and cellular migration. This review will discuss the function of Vimentin intermediate filaments in normal cell physiology, cell adhesion structures, cell shape, and signaling pathways. The genes interaction and gene network linked with Vimentin will be discussed in more studies. However, research aimed at understanding the function of Vimentin in different signaling cascades and gene interactions might offer novel methods for creating therapeutic medicines. Enrichr GEO datasets used gene ontology (GO) and pathway enrichment analyses. STRING online was used to predict the functional connections of proteins-proteins, followed by Cytoscape analysis to find the master genes. Cytoscape and STRING research revealed that eight genes, Fas, Casp8, Casp6, Fadd, Ripk1, Des, Tnnc2, and Tnnt3, were required for protein-protein interactions with Vimentin genes involved in cell differentiation.
期刊介绍:
Journal of Receptors and Signal Tranduction is included in the following abstracting and indexing services:
BIOBASE; Biochemistry and Biophysics Citation Index; Biological Abstracts; BIOSIS Full Coverage Shared; BIOSIS Previews; Biotechnology Abstracts; Current Contents/Life Sciences; Derwent Chimera; Derwent Drug File; EMBASE; EMBIOLOGY; Journal Citation Reports/ Science Edition; PubMed/MedLine; Science Citation Index; SciSearch; SCOPUS; SIIC.