DITA:分布式内存轨迹分析

Zeyuan Shang, Guoliang Li, Z. Bao
{"title":"DITA:分布式内存轨迹分析","authors":"Zeyuan Shang, Guoliang Li, Z. Bao","doi":"10.1145/3183713.3183743","DOIUrl":null,"url":null,"abstract":"Trajectory analytics can benefit many real-world applications, e.g., frequent trajectory based navigation systems, road planning, car pooling, and transportation optimizations. Existing algorithms focus on optimizing this problem in a single machine. However, the amount of trajectories exceeds the storage and processing capability of a single machine, and it calls for large-scale trajectory analytics in distributed environments. The distributed trajectory analytics faces challenges of data locality aware partitioning, load balance, easy-to-use interface, and versatility to support various trajectory similarity functions. To address these challenges, we propose a distributed in-memory trajectory analytics system DITA. We propose an effective partitioning method, global index and local index, to address the data locality problem. We devise cost-based techniques to balance the workload. We develop a filter-verification framework to improve the performance. Moreover, DITA can support most of existing similarity functions to quantify the similarity between trajectories. We integrate our framework seamlessly into Spark SQL, and make it support SQL and DataFrame API interfaces. We have conducted extensive experiments on real world datasets, and experimental results show that DITA outperforms existing distributed trajectory similarity search and join approaches significantly.","PeriodicalId":20430,"journal":{"name":"Proceedings of the 2018 International Conference on Management of Data","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"87","resultStr":"{\"title\":\"DITA: Distributed In-Memory Trajectory Analytics\",\"authors\":\"Zeyuan Shang, Guoliang Li, Z. Bao\",\"doi\":\"10.1145/3183713.3183743\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Trajectory analytics can benefit many real-world applications, e.g., frequent trajectory based navigation systems, road planning, car pooling, and transportation optimizations. Existing algorithms focus on optimizing this problem in a single machine. However, the amount of trajectories exceeds the storage and processing capability of a single machine, and it calls for large-scale trajectory analytics in distributed environments. The distributed trajectory analytics faces challenges of data locality aware partitioning, load balance, easy-to-use interface, and versatility to support various trajectory similarity functions. To address these challenges, we propose a distributed in-memory trajectory analytics system DITA. We propose an effective partitioning method, global index and local index, to address the data locality problem. We devise cost-based techniques to balance the workload. We develop a filter-verification framework to improve the performance. Moreover, DITA can support most of existing similarity functions to quantify the similarity between trajectories. We integrate our framework seamlessly into Spark SQL, and make it support SQL and DataFrame API interfaces. We have conducted extensive experiments on real world datasets, and experimental results show that DITA outperforms existing distributed trajectory similarity search and join approaches significantly.\",\"PeriodicalId\":20430,\"journal\":{\"name\":\"Proceedings of the 2018 International Conference on Management of Data\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"87\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 International Conference on Management of Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3183713.3183743\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3183713.3183743","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 87

摘要

轨迹分析可以使许多现实世界的应用受益,例如,基于频繁轨迹的导航系统、道路规划、拼车和交通优化。现有的算法侧重于在单个机器上优化这个问题。然而,轨迹的数量超过了单个机器的存储和处理能力,它需要在分布式环境中进行大规模的轨迹分析。分布式轨迹分析面临着数据位置感知划分、负载平衡、易于使用的界面以及支持各种轨迹相似函数的多功能性等挑战。为了解决这些挑战,我们提出了一个分布式内存轨迹分析系统DITA。为了解决数据局部性问题,我们提出了一种有效的分区方法:全局索引和局部索引。我们设计了基于成本的技术来平衡工作量。我们开发了一个过滤器验证框架来提高性能。此外,DITA可以支持大多数现有的相似度函数来量化轨迹之间的相似度。我们将我们的框架无缝集成到Spark SQL中,并使其支持SQL和DataFrame API接口。我们在真实世界的数据集上进行了大量的实验,实验结果表明DITA显著优于现有的分布式轨迹相似度搜索和连接方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DITA: Distributed In-Memory Trajectory Analytics
Trajectory analytics can benefit many real-world applications, e.g., frequent trajectory based navigation systems, road planning, car pooling, and transportation optimizations. Existing algorithms focus on optimizing this problem in a single machine. However, the amount of trajectories exceeds the storage and processing capability of a single machine, and it calls for large-scale trajectory analytics in distributed environments. The distributed trajectory analytics faces challenges of data locality aware partitioning, load balance, easy-to-use interface, and versatility to support various trajectory similarity functions. To address these challenges, we propose a distributed in-memory trajectory analytics system DITA. We propose an effective partitioning method, global index and local index, to address the data locality problem. We devise cost-based techniques to balance the workload. We develop a filter-verification framework to improve the performance. Moreover, DITA can support most of existing similarity functions to quantify the similarity between trajectories. We integrate our framework seamlessly into Spark SQL, and make it support SQL and DataFrame API interfaces. We have conducted extensive experiments on real world datasets, and experimental results show that DITA outperforms existing distributed trajectory similarity search and join approaches significantly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信