涡流泵作为涡轮用于雷诺数效应下粘性流体流动的能量回收

IF 1.8 3区 工程技术 Q3 ENGINEERING, MECHANICAL
Wenguang Li
{"title":"涡流泵作为涡轮用于雷诺数效应下粘性流体流动的能量回收","authors":"Wenguang Li","doi":"10.1115/1.4051313","DOIUrl":null,"url":null,"abstract":"\n A vortex pump with a specific speed of 76 was studied in its turbine mode by using Fluent 6.3 based on the steady, three-dimensional, incompressible, Reynolds time-averaged Navier-Stokes equations, standard k-? turbulence model and non-equilibrium wall function in multiple reference system. The performance and flow structure of six liquids with different densities and viscosities were characterized, and the hydraulic, volumetric, and mechanical losses were discomposed. The correction factors of flow rate, head, shaft-power, efficiency, and disc friction power in turbine mode were correlated with impeller Reynolds number at three operational points. The conversion factors of flow rate, head, efficiency from the pump mode to the turbine mode were expressed with Reynolds number and compared with the counterparts of centrifugal pumps in the literature. It was indicated that the vortex pump can produce power as a turbine but becomes inefficient with increasing viscosity or decreasing impeller Reynolds number, especially as the number is smaller than 104 due to increased hydraulic, volumetric, and mechanical power losses. A vortex structure with radial, axial, and meridian vortices occurs in the impeller at different flow rates and viscosities. The incidence at blade leading edge and deviation angle at blade trailing edge depend largely on flow rate and viscosity. The impeller should be modified to improve its hydraulic performance under highly viscous fluid flow conditions. The entropy generation rate method cannot demonstrate the change in hydraulic loss with viscosity when the Reynolds number is below 104.","PeriodicalId":54833,"journal":{"name":"Journal of Fluids Engineering-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2021-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Vortex Pump as Turbine for Energy Recovery in Viscous Fluid Flows with Reynolds Number Effect\",\"authors\":\"Wenguang Li\",\"doi\":\"10.1115/1.4051313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A vortex pump with a specific speed of 76 was studied in its turbine mode by using Fluent 6.3 based on the steady, three-dimensional, incompressible, Reynolds time-averaged Navier-Stokes equations, standard k-? turbulence model and non-equilibrium wall function in multiple reference system. The performance and flow structure of six liquids with different densities and viscosities were characterized, and the hydraulic, volumetric, and mechanical losses were discomposed. The correction factors of flow rate, head, shaft-power, efficiency, and disc friction power in turbine mode were correlated with impeller Reynolds number at three operational points. The conversion factors of flow rate, head, efficiency from the pump mode to the turbine mode were expressed with Reynolds number and compared with the counterparts of centrifugal pumps in the literature. It was indicated that the vortex pump can produce power as a turbine but becomes inefficient with increasing viscosity or decreasing impeller Reynolds number, especially as the number is smaller than 104 due to increased hydraulic, volumetric, and mechanical power losses. A vortex structure with radial, axial, and meridian vortices occurs in the impeller at different flow rates and viscosities. The incidence at blade leading edge and deviation angle at blade trailing edge depend largely on flow rate and viscosity. The impeller should be modified to improve its hydraulic performance under highly viscous fluid flow conditions. The entropy generation rate method cannot demonstrate the change in hydraulic loss with viscosity when the Reynolds number is below 104.\",\"PeriodicalId\":54833,\"journal\":{\"name\":\"Journal of Fluids Engineering-Transactions of the Asme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluids Engineering-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4051313\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluids Engineering-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4051313","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 4

摘要

基于定常、三维、不可压缩、Reynolds时均Navier-Stokes方程、标准k-?多参照系湍流模型与非平衡壁函数。对6种不同密度和粘度液体的性能和流动结构进行了表征,并对其水力、体积和力学损失进行了分解。涡轮模式下的流量、扬程、轴功率、效率和盘摩擦功率的修正系数与三个工作点的叶轮雷诺数相关。将流量、扬程、效率从泵型到涡轮型的换算系数用雷诺数表示,并与文献中相应的离心泵进行比较。结果表明,旋涡泵可以作为涡轮产生动力,但随着粘度的增加或叶轮雷诺数的减小而变得低效,特别是当雷诺数小于104时,由于水力、容积和机械功率损失的增加。在不同的流速和粘度下,叶轮内存在径向、轴向和子午涡结构。叶片前缘入射角和叶片尾缘偏角在很大程度上取决于流量和粘度。应对叶轮进行改造,提高其在高粘性流体流动条件下的水力性能。当雷诺数小于104时,熵产率法不能反映水力损失随粘度的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vortex Pump as Turbine for Energy Recovery in Viscous Fluid Flows with Reynolds Number Effect
A vortex pump with a specific speed of 76 was studied in its turbine mode by using Fluent 6.3 based on the steady, three-dimensional, incompressible, Reynolds time-averaged Navier-Stokes equations, standard k-? turbulence model and non-equilibrium wall function in multiple reference system. The performance and flow structure of six liquids with different densities and viscosities were characterized, and the hydraulic, volumetric, and mechanical losses were discomposed. The correction factors of flow rate, head, shaft-power, efficiency, and disc friction power in turbine mode were correlated with impeller Reynolds number at three operational points. The conversion factors of flow rate, head, efficiency from the pump mode to the turbine mode were expressed with Reynolds number and compared with the counterparts of centrifugal pumps in the literature. It was indicated that the vortex pump can produce power as a turbine but becomes inefficient with increasing viscosity or decreasing impeller Reynolds number, especially as the number is smaller than 104 due to increased hydraulic, volumetric, and mechanical power losses. A vortex structure with radial, axial, and meridian vortices occurs in the impeller at different flow rates and viscosities. The incidence at blade leading edge and deviation angle at blade trailing edge depend largely on flow rate and viscosity. The impeller should be modified to improve its hydraulic performance under highly viscous fluid flow conditions. The entropy generation rate method cannot demonstrate the change in hydraulic loss with viscosity when the Reynolds number is below 104.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.60
自引率
10.00%
发文量
165
审稿时长
5.0 months
期刊介绍: Multiphase flows; Pumps; Aerodynamics; Boundary layers; Bubbly flows; Cavitation; Compressible flows; Convective heat/mass transfer as it is affected by fluid flow; Duct and pipe flows; Free shear layers; Flows in biological systems; Fluid-structure interaction; Fluid transients and wave motion; Jets; Naval hydrodynamics; Sprays; Stability and transition; Turbulence wakes microfluidics and other fundamental/applied fluid mechanical phenomena and processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信