Yelin Kim
{"title":"Exploring sources of variation in human behavioral data: Towards automatic audio-visual emotion recognition","authors":"Yelin Kim","doi":"10.1109/ACII.2015.7344653","DOIUrl":null,"url":null,"abstract":"My PhD work aims at developing computational methodologies for automatic emotion recognition from audiovisual behavioral data. A main challenge in automatic emotion recognition is that human behavioral data are highly complex, due to multiple sources that vary and modulate behaviors. My goal is to provide computational frameworks for understanding and controlling for multiple sources of variation in human behavioral data that co-occur with the production of emotion, with the aim of improving automatic emotion recognition systems [1]-[6]. In particular, my research aims at providing representation, modeling, and analysis methods for complex and time-changing behaviors in human audio-visual data by introducing temporal segmentation and time-series analysis techniques. This research contributes to the affective computing community by improving the performance of automatic emotion recognition systems and increasing the understanding of affective cues embedded within complex audio-visual data.","PeriodicalId":6863,"journal":{"name":"2015 International Conference on Affective Computing and Intelligent Interaction (ACII)","volume":"16 1","pages":"748-753"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Affective Computing and Intelligent Interaction (ACII)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACII.2015.7344653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我的博士工作旨在开发从视听行为数据中自动识别情感的计算方法。自动情绪识别的一个主要挑战是人类行为数据非常复杂,因为有多种来源可以改变和调节行为。我的目标是提供计算框架,用于理解和控制与情感产生共同发生的人类行为数据中的多种变异来源,目的是改进自动情感识别系统[1]-[6]。特别是,我的研究旨在通过引入时间分割和时间序列分析技术,为人类视听数据中复杂和随时间变化的行为提供表征、建模和分析方法。本研究通过提高自动情感识别系统的性能和增加对复杂视听数据中嵌入的情感线索的理解,为情感计算社区做出了贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring sources of variation in human behavioral data: Towards automatic audio-visual emotion recognition
My PhD work aims at developing computational methodologies for automatic emotion recognition from audiovisual behavioral data. A main challenge in automatic emotion recognition is that human behavioral data are highly complex, due to multiple sources that vary and modulate behaviors. My goal is to provide computational frameworks for understanding and controlling for multiple sources of variation in human behavioral data that co-occur with the production of emotion, with the aim of improving automatic emotion recognition systems [1]-[6]. In particular, my research aims at providing representation, modeling, and analysis methods for complex and time-changing behaviors in human audio-visual data by introducing temporal segmentation and time-series analysis techniques. This research contributes to the affective computing community by improving the performance of automatic emotion recognition systems and increasing the understanding of affective cues embedded within complex audio-visual data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信