部分线性尾指数模型的b样条有效估计

Pub Date : 2022-02-02 DOI:10.1111/anzs.12357
Yaolan Ma, Bo Wei
{"title":"部分线性尾指数模型的b样条有效估计","authors":"Yaolan Ma,&nbsp;Bo Wei","doi":"10.1111/anzs.12357","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The tail index is an important parameter in extreme value theory. In this paper, we consider a simple yet flexible spline estimation method for partially linear tail index models. We approximate the unknown function by B-splines and construct an approximate log-likelihood function to estimate the coefficients of the linear covariates and the B-spline basis functions. Consistency and asymptotic normality of the estimators are established. Subsequently, the proposed method is illustrated by using simulations and applications to the Fremantle annual maximum sea levels data and Chicago air pollution data.</p>\n </div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient estimation of partially linear tail index models using B-splines\",\"authors\":\"Yaolan Ma,&nbsp;Bo Wei\",\"doi\":\"10.1111/anzs.12357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The tail index is an important parameter in extreme value theory. In this paper, we consider a simple yet flexible spline estimation method for partially linear tail index models. We approximate the unknown function by B-splines and construct an approximate log-likelihood function to estimate the coefficients of the linear covariates and the B-spline basis functions. Consistency and asymptotic normality of the estimators are established. Subsequently, the proposed method is illustrated by using simulations and applications to the Fremantle annual maximum sea levels data and Chicago air pollution data.</p>\\n </div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12357\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

尾指数是极值理论中的一个重要参数。本文考虑了部分线性尾指数模型的一种简单而灵活的样条估计方法。我们用b样条近似未知函数,构造一个近似对数似然函数来估计线性协变量和b样条基函数的系数。建立了估计量的相合性和渐近正态性。随后,通过对Fremantle年最高海平面数据和芝加哥空气污染数据的模拟和应用说明了所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Efficient estimation of partially linear tail index models using B-splines

The tail index is an important parameter in extreme value theory. In this paper, we consider a simple yet flexible spline estimation method for partially linear tail index models. We approximate the unknown function by B-splines and construct an approximate log-likelihood function to estimate the coefficients of the linear covariates and the B-spline basis functions. Consistency and asymptotic normality of the estimators are established. Subsequently, the proposed method is illustrated by using simulations and applications to the Fremantle annual maximum sea levels data and Chicago air pollution data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信