使用对抗网络保护视觉秘密

Nisarg Raval, Ashwin Machanavajjhala, Landon P. Cox
{"title":"使用对抗网络保护视觉秘密","authors":"Nisarg Raval, Ashwin Machanavajjhala, Landon P. Cox","doi":"10.1109/CVPRW.2017.174","DOIUrl":null,"url":null,"abstract":"Protecting visual secrets is an important problem due to the prevalence of cameras that continuously monitor our surroundings. Any viable solution to this problem should also minimize the impact on the utility of applications that use images. In this work, we build on the existing work of adversarial learning to design a perturbation mechanism that jointly optimizes privacy and utility objectives. We provide a feasibility study of the proposed mechanism and present ideas on developing a privacy framework based on the adversarial perturbation mechanism.","PeriodicalId":6668,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"10 1","pages":"1329-1332"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"61","resultStr":"{\"title\":\"Protecting Visual Secrets Using Adversarial Nets\",\"authors\":\"Nisarg Raval, Ashwin Machanavajjhala, Landon P. Cox\",\"doi\":\"10.1109/CVPRW.2017.174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Protecting visual secrets is an important problem due to the prevalence of cameras that continuously monitor our surroundings. Any viable solution to this problem should also minimize the impact on the utility of applications that use images. In this work, we build on the existing work of adversarial learning to design a perturbation mechanism that jointly optimizes privacy and utility objectives. We provide a feasibility study of the proposed mechanism and present ideas on developing a privacy framework based on the adversarial perturbation mechanism.\",\"PeriodicalId\":6668,\"journal\":{\"name\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"volume\":\"10 1\",\"pages\":\"1329-1332\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"61\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW.2017.174\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2017.174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 61

摘要

由于不断监控我们周围环境的摄像机的普及,保护视觉秘密是一个重要的问题。这个问题的任何可行的解决方案都应该尽量减少对使用映像的应用程序的影响。在这项工作中,我们以现有的对抗性学习工作为基础,设计了一种共同优化隐私和效用目标的扰动机制。我们对所提出的机制进行了可行性研究,并提出了基于对抗性摄动机制开发隐私框架的想法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Protecting Visual Secrets Using Adversarial Nets
Protecting visual secrets is an important problem due to the prevalence of cameras that continuously monitor our surroundings. Any viable solution to this problem should also minimize the impact on the utility of applications that use images. In this work, we build on the existing work of adversarial learning to design a perturbation mechanism that jointly optimizes privacy and utility objectives. We provide a feasibility study of the proposed mechanism and present ideas on developing a privacy framework based on the adversarial perturbation mechanism.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信