扩散路径积分的无偏模拟估计

Guanting Chen, Alexander D. Shkolnik, K. Giesecke
{"title":"扩散路径积分的无偏模拟估计","authors":"Guanting Chen, Alexander D. Shkolnik, K. Giesecke","doi":"10.1109/WSC48552.2020.9383881","DOIUrl":null,"url":null,"abstract":"We develop and analyze Monte Carlo simulation estimators for path integrals of a multivariate diffusion with a general state-dependent drift and volatility. We prove that our estimators are unbiased and have finite variance by extending the regularity conditions of the parametrix method. The performance of our estimators is illustrated on numerical examples that highlight some applied problems for which our estimators apply.","PeriodicalId":6692,"journal":{"name":"2020 Winter Simulation Conference (WSC)","volume":"52 1","pages":"277-288"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unbiased Simulation Estimators for Path Integrals of Diffusions\",\"authors\":\"Guanting Chen, Alexander D. Shkolnik, K. Giesecke\",\"doi\":\"10.1109/WSC48552.2020.9383881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop and analyze Monte Carlo simulation estimators for path integrals of a multivariate diffusion with a general state-dependent drift and volatility. We prove that our estimators are unbiased and have finite variance by extending the regularity conditions of the parametrix method. The performance of our estimators is illustrated on numerical examples that highlight some applied problems for which our estimators apply.\",\"PeriodicalId\":6692,\"journal\":{\"name\":\"2020 Winter Simulation Conference (WSC)\",\"volume\":\"52 1\",\"pages\":\"277-288\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Winter Simulation Conference (WSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSC48552.2020.9383881\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC48552.2020.9383881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们开发并分析了具有一般状态相关漂移和波动的多元扩散的路径积分的蒙特卡罗模拟估计。通过推广参数法的正则性条件,证明了我们的估计量是无偏和有限方差的。数值例子说明了我们的估计器的性能,突出了我们的估计器所适用的一些应用问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unbiased Simulation Estimators for Path Integrals of Diffusions
We develop and analyze Monte Carlo simulation estimators for path integrals of a multivariate diffusion with a general state-dependent drift and volatility. We prove that our estimators are unbiased and have finite variance by extending the regularity conditions of the parametrix method. The performance of our estimators is illustrated on numerical examples that highlight some applied problems for which our estimators apply.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信