{"title":"用于探测不同波长拓扑电荷的多焦超透镜","authors":"A. Nalimov, V. Kotlyar","doi":"10.18287/2412-6179-co-1170","DOIUrl":null,"url":null,"abstract":"A combined high-aperture metalens in a thin silicon nitride film, which consists of two inclined sector metalens, is considered. Each sector metalens consists of a set of binary subwavelength gratings. The diameter of the lens is 14 μm. It has been shown using time-domain finite difference method that the metalens can simultaneously detect optical vortices with two topological charges –1 and –2, in almost the entire visible wavelength range. The metalens can distinguish several wavelengths that are focused at different points in the focal plane: a 1 nm change in wavelength results in a focal spot shift of about 4 nm. When the metalens is illuminated by a Gaussian beam with left-handed circular polarization, two optical vortices with topological charges 1 and 2 are simultaneously formed at 6 nm between each other at focal distance equals 6 nm. This metalens can be used to increase information in transmission channel in wireless telecommunication systems by selecting the space-time modes of laser radiation with different topological charges and different wavelengths. The considered microlens is an example of a compact demultiplexer.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multifocal metalens for detecting several topological charges at different wavelengths\",\"authors\":\"A. Nalimov, V. Kotlyar\",\"doi\":\"10.18287/2412-6179-co-1170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A combined high-aperture metalens in a thin silicon nitride film, which consists of two inclined sector metalens, is considered. Each sector metalens consists of a set of binary subwavelength gratings. The diameter of the lens is 14 μm. It has been shown using time-domain finite difference method that the metalens can simultaneously detect optical vortices with two topological charges –1 and –2, in almost the entire visible wavelength range. The metalens can distinguish several wavelengths that are focused at different points in the focal plane: a 1 nm change in wavelength results in a focal spot shift of about 4 nm. When the metalens is illuminated by a Gaussian beam with left-handed circular polarization, two optical vortices with topological charges 1 and 2 are simultaneously formed at 6 nm between each other at focal distance equals 6 nm. This metalens can be used to increase information in transmission channel in wireless telecommunication systems by selecting the space-time modes of laser radiation with different topological charges and different wavelengths. The considered microlens is an example of a compact demultiplexer.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18287/2412-6179-co-1170\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/2412-6179-co-1170","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Multifocal metalens for detecting several topological charges at different wavelengths
A combined high-aperture metalens in a thin silicon nitride film, which consists of two inclined sector metalens, is considered. Each sector metalens consists of a set of binary subwavelength gratings. The diameter of the lens is 14 μm. It has been shown using time-domain finite difference method that the metalens can simultaneously detect optical vortices with two topological charges –1 and –2, in almost the entire visible wavelength range. The metalens can distinguish several wavelengths that are focused at different points in the focal plane: a 1 nm change in wavelength results in a focal spot shift of about 4 nm. When the metalens is illuminated by a Gaussian beam with left-handed circular polarization, two optical vortices with topological charges 1 and 2 are simultaneously formed at 6 nm between each other at focal distance equals 6 nm. This metalens can be used to increase information in transmission channel in wireless telecommunication systems by selecting the space-time modes of laser radiation with different topological charges and different wavelengths. The considered microlens is an example of a compact demultiplexer.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.