{"title":"声源识别的压缩球面波束形成","authors":"Guoli Ping, Zhigang Chu, Yang Yang","doi":"10.3813/aaa.919406","DOIUrl":null,"url":null,"abstract":"This study examines a compressive spherical beamforming (CSB) method, using a rigid spherical microphone array to localize and quantify the acoustic contribution of sources. The method relies on the array signal model in the spherical harmonics domain that can be represented as a spatially\n sparse problem. This makes it possible to use compressive sensing to solve an underdetermined problem via promoting sparsity. The estimation of the angular position of sources with respect to the microphone array, as well as the three-dimensional localization over a volume are investigated.\n Several sparse recovery algorithms [orthogonal matching pursuit (OMP), generalized OMP, ϱ1-norm minimization, and reweighted ϱ1-norm minimization] are examined for this purpose. The numerical and experimental results indicate that sparse\n recovery methods outperform conventional spherical harmonics beamforming. Reweighted ϱ1-norm has good adaptability to noise, improving the robustness of CSB. The method can successfully localize the angular position of sources, and quantify their relative pressure\n contribution. The method is promising to localize sources in a three-dimensional domain of interest. However, the three-dimensional localization is more sensitive to noise, source distance, and properties of the sensing matrix than the two-dimensional localization.","PeriodicalId":35085,"journal":{"name":"Acta Acustica united with Acustica","volume":"60 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Compressive Spherical Beamforming for Acoustic Source Identification\",\"authors\":\"Guoli Ping, Zhigang Chu, Yang Yang\",\"doi\":\"10.3813/aaa.919406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study examines a compressive spherical beamforming (CSB) method, using a rigid spherical microphone array to localize and quantify the acoustic contribution of sources. The method relies on the array signal model in the spherical harmonics domain that can be represented as a spatially\\n sparse problem. This makes it possible to use compressive sensing to solve an underdetermined problem via promoting sparsity. The estimation of the angular position of sources with respect to the microphone array, as well as the three-dimensional localization over a volume are investigated.\\n Several sparse recovery algorithms [orthogonal matching pursuit (OMP), generalized OMP, ϱ1-norm minimization, and reweighted ϱ1-norm minimization] are examined for this purpose. The numerical and experimental results indicate that sparse\\n recovery methods outperform conventional spherical harmonics beamforming. Reweighted ϱ1-norm has good adaptability to noise, improving the robustness of CSB. The method can successfully localize the angular position of sources, and quantify their relative pressure\\n contribution. The method is promising to localize sources in a three-dimensional domain of interest. However, the three-dimensional localization is more sensitive to noise, source distance, and properties of the sensing matrix than the two-dimensional localization.\",\"PeriodicalId\":35085,\"journal\":{\"name\":\"Acta Acustica united with Acustica\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Acustica united with Acustica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3813/aaa.919406\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Acustica united with Acustica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3813/aaa.919406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
Compressive Spherical Beamforming for Acoustic Source Identification
This study examines a compressive spherical beamforming (CSB) method, using a rigid spherical microphone array to localize and quantify the acoustic contribution of sources. The method relies on the array signal model in the spherical harmonics domain that can be represented as a spatially
sparse problem. This makes it possible to use compressive sensing to solve an underdetermined problem via promoting sparsity. The estimation of the angular position of sources with respect to the microphone array, as well as the three-dimensional localization over a volume are investigated.
Several sparse recovery algorithms [orthogonal matching pursuit (OMP), generalized OMP, ϱ1-norm minimization, and reweighted ϱ1-norm minimization] are examined for this purpose. The numerical and experimental results indicate that sparse
recovery methods outperform conventional spherical harmonics beamforming. Reweighted ϱ1-norm has good adaptability to noise, improving the robustness of CSB. The method can successfully localize the angular position of sources, and quantify their relative pressure
contribution. The method is promising to localize sources in a three-dimensional domain of interest. However, the three-dimensional localization is more sensitive to noise, source distance, and properties of the sensing matrix than the two-dimensional localization.
期刊介绍:
Cessation. Acta Acustica united with Acustica (Acta Acust united Ac), was published together with the European Acoustics Association (EAA). It was an international, peer-reviewed journal on acoustics. It published original articles on all subjects in the field of acoustics, such as
• General Linear Acoustics, • Nonlinear Acoustics, Macrosonics, • Aeroacoustics, • Atmospheric Sound, • Underwater Sound, • Ultrasonics, • Physical Acoustics, • Structural Acoustics, • Noise Control, • Active Control, • Environmental Noise, • Building Acoustics, • Room Acoustics, • Acoustic Materials and Metamaterials, • Audio Signal Processing and Transducers, • Computational and Numerical Acoustics, • Hearing, Audiology and Psychoacoustics, • Speech,
• Musical Acoustics, • Virtual Acoustics, • Auditory Quality of Systems, • Animal Bioacoustics, • History of Acoustics.