一种提高决策树分类阶段效率的新方法

Q4 Computer Science
Naga Muneiah Janapati, D. SubbaRaoCh
{"title":"一种提高决策树分类阶段效率的新方法","authors":"Naga Muneiah Janapati, D. SubbaRaoCh","doi":"10.5565/rev/elcvia.1267","DOIUrl":null,"url":null,"abstract":"So far, most of the research on classification algorithms in machine learning has been focused only on improving the training speed and further improving the technical performance evaluation measures of the constructed models. There is no focus on improving the runtime efficiency of the classification phase which is much required in some critical applications. In this paper, we are considering the computation complexity of a decision tree’s classification phase as the major criterion. A novel approach has been proposed to predict the class label of an unseen instance using the decision tree in less time than the regular tree traversal method. In the proposed method, the constructed decision tree is represented in the form of arrays. Then, the process of finding the class label is carried out by performing the bitwise operations between the elements of the arrays and test instance. Empirical results on various UCI data sets proved that the proposed method outperforms the standard method and five other benchmark classifiers and its classification is at least four times faster than the regular method.","PeriodicalId":38711,"journal":{"name":"Electronic Letters on Computer Vision and Image Analysis","volume":"41 1","pages":"38-54"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Method to Improve the Efficiency of Classification Phase of a Decision Tree\",\"authors\":\"Naga Muneiah Janapati, D. SubbaRaoCh\",\"doi\":\"10.5565/rev/elcvia.1267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"So far, most of the research on classification algorithms in machine learning has been focused only on improving the training speed and further improving the technical performance evaluation measures of the constructed models. There is no focus on improving the runtime efficiency of the classification phase which is much required in some critical applications. In this paper, we are considering the computation complexity of a decision tree’s classification phase as the major criterion. A novel approach has been proposed to predict the class label of an unseen instance using the decision tree in less time than the regular tree traversal method. In the proposed method, the constructed decision tree is represented in the form of arrays. Then, the process of finding the class label is carried out by performing the bitwise operations between the elements of the arrays and test instance. Empirical results on various UCI data sets proved that the proposed method outperforms the standard method and five other benchmark classifiers and its classification is at least four times faster than the regular method.\",\"PeriodicalId\":38711,\"journal\":{\"name\":\"Electronic Letters on Computer Vision and Image Analysis\",\"volume\":\"41 1\",\"pages\":\"38-54\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Letters on Computer Vision and Image Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5565/rev/elcvia.1267\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Letters on Computer Vision and Image Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5565/rev/elcvia.1267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

到目前为止,机器学习中分类算法的研究大多集中在提高训练速度和进一步改进所构建模型的技术性能评价指标上。没有着重于提高分类阶段的运行时效率,而这在一些关键应用程序中是非常需要的。在本文中,我们将决策树的分类阶段的计算复杂度作为主要标准。提出了一种利用决策树预测未见实例的类标号的新方法,比常规树遍历方法在更短的时间内进行预测。在该方法中,构造的决策树以数组的形式表示。然后,通过在数组元素和测试实例之间执行按位操作来查找类标签。在各种UCI数据集上的实证结果证明,该方法优于标准方法和其他5种基准分类器,其分类速度至少是常规方法的4倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Method to Improve the Efficiency of Classification Phase of a Decision Tree
So far, most of the research on classification algorithms in machine learning has been focused only on improving the training speed and further improving the technical performance evaluation measures of the constructed models. There is no focus on improving the runtime efficiency of the classification phase which is much required in some critical applications. In this paper, we are considering the computation complexity of a decision tree’s classification phase as the major criterion. A novel approach has been proposed to predict the class label of an unseen instance using the decision tree in less time than the regular tree traversal method. In the proposed method, the constructed decision tree is represented in the form of arrays. Then, the process of finding the class label is carried out by performing the bitwise operations between the elements of the arrays and test instance. Empirical results on various UCI data sets proved that the proposed method outperforms the standard method and five other benchmark classifiers and its classification is at least four times faster than the regular method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Letters on Computer Vision and Image Analysis
Electronic Letters on Computer Vision and Image Analysis Computer Science-Computer Vision and Pattern Recognition
CiteScore
2.50
自引率
0.00%
发文量
19
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信