基于监督机器学习的鲁棒视频摘要算法

Sunil S Harakannanavar , Shaik Roshan Sameer , Vikash Kumar , Sunil Kumar Behera , Adithya V Amberkar , Veena I. Puranikmath
{"title":"基于监督机器学习的鲁棒视频摘要算法","authors":"Sunil S Harakannanavar ,&nbsp;Shaik Roshan Sameer ,&nbsp;Vikash Kumar ,&nbsp;Sunil Kumar Behera ,&nbsp;Adithya V Amberkar ,&nbsp;Veena I. Puranikmath","doi":"10.1016/j.gltp.2022.04.009","DOIUrl":null,"url":null,"abstract":"<div><p>The proposed approach uses ResNet-18 for feature extraction and with the help of temporal interest proposals generated for the video sequences, generates a video summary. The ResNet-18 is a convolutional neural network with eighteen layers. The existing methods don't address the problem of the summary being temporally consistent. The proposed work aims to create a temporally consistent summary. The classification and regression module are implemented to get fixed length inputs of the combined features. After this, the non-maximum suppression algorithm is applied to reduce the redundancy and remove the video segments having poor quality and low confidence-scores. Video summaries are generated using the kernel temporal segmentation (KTS) algorithm which converts a given video segment into video shots. The two standard datasets TVSum and SumMe are used to evaluate the proposed model. It is seen that the F-score obtained on TVSum and SumMe dataset is 56.13 and 45.06 respectively.</p></div>","PeriodicalId":100588,"journal":{"name":"Global Transitions Proceedings","volume":"3 1","pages":"Pages 131-135"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666285X22000450/pdfft?md5=eed96dd5bed239cbd125280be4cf8fa1&pid=1-s2.0-S2666285X22000450-main.pdf","citationCount":"2","resultStr":"{\"title\":\"Robust video summarization algorithm using supervised machine learning\",\"authors\":\"Sunil S Harakannanavar ,&nbsp;Shaik Roshan Sameer ,&nbsp;Vikash Kumar ,&nbsp;Sunil Kumar Behera ,&nbsp;Adithya V Amberkar ,&nbsp;Veena I. Puranikmath\",\"doi\":\"10.1016/j.gltp.2022.04.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The proposed approach uses ResNet-18 for feature extraction and with the help of temporal interest proposals generated for the video sequences, generates a video summary. The ResNet-18 is a convolutional neural network with eighteen layers. The existing methods don't address the problem of the summary being temporally consistent. The proposed work aims to create a temporally consistent summary. The classification and regression module are implemented to get fixed length inputs of the combined features. After this, the non-maximum suppression algorithm is applied to reduce the redundancy and remove the video segments having poor quality and low confidence-scores. Video summaries are generated using the kernel temporal segmentation (KTS) algorithm which converts a given video segment into video shots. The two standard datasets TVSum and SumMe are used to evaluate the proposed model. It is seen that the F-score obtained on TVSum and SumMe dataset is 56.13 and 45.06 respectively.</p></div>\",\"PeriodicalId\":100588,\"journal\":{\"name\":\"Global Transitions Proceedings\",\"volume\":\"3 1\",\"pages\":\"Pages 131-135\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666285X22000450/pdfft?md5=eed96dd5bed239cbd125280be4cf8fa1&pid=1-s2.0-S2666285X22000450-main.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Transitions Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666285X22000450\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Transitions Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666285X22000450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

该方法使用ResNet-18进行特征提取,并借助为视频序列生成的时间兴趣建议生成视频摘要。ResNet-18是一个有18层的卷积神经网络。现有的方法不能解决摘要暂时一致的问题。建议的工作旨在创建一个暂时一致的摘要。实现分类回归模块,得到组合特征的固定长度输入。在此之后,采用非最大抑制算法减少冗余,去除质量差、置信度低的视频片段。视频摘要的生成采用核时间分割算法(KTS),该算法将给定的视频片段转换为视频片段。使用两个标准数据集TVSum和SumMe来评估所提出的模型。可以看出,在TVSum和SumMe数据集上得到的f分数分别为56.13和45.06。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust video summarization algorithm using supervised machine learning

The proposed approach uses ResNet-18 for feature extraction and with the help of temporal interest proposals generated for the video sequences, generates a video summary. The ResNet-18 is a convolutional neural network with eighteen layers. The existing methods don't address the problem of the summary being temporally consistent. The proposed work aims to create a temporally consistent summary. The classification and regression module are implemented to get fixed length inputs of the combined features. After this, the non-maximum suppression algorithm is applied to reduce the redundancy and remove the video segments having poor quality and low confidence-scores. Video summaries are generated using the kernel temporal segmentation (KTS) algorithm which converts a given video segment into video shots. The two standard datasets TVSum and SumMe are used to evaluate the proposed model. It is seen that the F-score obtained on TVSum and SumMe dataset is 56.13 and 45.06 respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信