S. Kalam, Mohammad Rasheed Khan, Rizwan Ahmed Khan
{"title":"基于人工智能的储层体积系数预测技术","authors":"S. Kalam, Mohammad Rasheed Khan, Rizwan Ahmed Khan","doi":"10.2118/204561-ms","DOIUrl":null,"url":null,"abstract":"\n This investigation presents a powerful predictive model to determine crude oil formation volume factor (FVF) using state-of-the-art artificial intelligence (AI) techniques. FVF is a vital pressure-volume-temperature (PVT) parameter used to characterize hydrocarbon systems and is pivotal to reserves calculation and reservoir engineering studies. Ideally, FVF is measured at the laboratory scale; however, prognostic tools to evaluate this parameter can optimize time and cost estimates. The database utilized in this study is obtained from open literature and covers statistics of crude oils of the Middle East region.\n Multiple AI algorithms are considered, including Artificial Neural Networks (ANN) and Artificial Neural Fuzzy Inference Systems (ANFIS). Models are developed utilizing an optimization strategy for various parameters/hyper-parameters of the respective algorithms. Unique permutations and combinations for the number of perceptron and their resident layers is investigated to reach a solution that provides the most optimum output. These intelligent models are produced as a function of the parameters intrinsically affecting FVF; reservoir temperature, solution GOR, gas specific gravity, bubble point pressure, and crude oil API gravity. Comparative analysis of developed AI models is performed using visualization/statistical analysis, and the best model is pointed out. Finally, the mathematical equation extraction to determine FVF is accomplished with the respective weights and bias for the model presented.\n Graphical analysis is used to evaluate the performance of developed AI models. The results of scatter plots showed most of the points are lying on the 45 degree line. Moreover, during this study, an error metric is developed comprising of multiple analysis parameters; Average absolute percentage error (AAPE), Root Mean Squared Error (RMSE), coefficient of determination (R2). All models investigated are tested on an unseen dataset to prevent a biased model's development. Performance of the established AI models is gauged based on this error metric, demonstrating that ANN outperforms ANFIS with error within 1% of the measured PVT values. A computationally derived intelligent model provides the strongest predictive capabilities as it maps complex non-linear interactions between various input parameters leading to FVF.","PeriodicalId":11024,"journal":{"name":"Day 4 Wed, December 01, 2021","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial Intelligence-based Predictive Technique to Estimate Oil Formation Volume Factor\",\"authors\":\"S. Kalam, Mohammad Rasheed Khan, Rizwan Ahmed Khan\",\"doi\":\"10.2118/204561-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This investigation presents a powerful predictive model to determine crude oil formation volume factor (FVF) using state-of-the-art artificial intelligence (AI) techniques. FVF is a vital pressure-volume-temperature (PVT) parameter used to characterize hydrocarbon systems and is pivotal to reserves calculation and reservoir engineering studies. Ideally, FVF is measured at the laboratory scale; however, prognostic tools to evaluate this parameter can optimize time and cost estimates. The database utilized in this study is obtained from open literature and covers statistics of crude oils of the Middle East region.\\n Multiple AI algorithms are considered, including Artificial Neural Networks (ANN) and Artificial Neural Fuzzy Inference Systems (ANFIS). Models are developed utilizing an optimization strategy for various parameters/hyper-parameters of the respective algorithms. Unique permutations and combinations for the number of perceptron and their resident layers is investigated to reach a solution that provides the most optimum output. These intelligent models are produced as a function of the parameters intrinsically affecting FVF; reservoir temperature, solution GOR, gas specific gravity, bubble point pressure, and crude oil API gravity. Comparative analysis of developed AI models is performed using visualization/statistical analysis, and the best model is pointed out. Finally, the mathematical equation extraction to determine FVF is accomplished with the respective weights and bias for the model presented.\\n Graphical analysis is used to evaluate the performance of developed AI models. The results of scatter plots showed most of the points are lying on the 45 degree line. Moreover, during this study, an error metric is developed comprising of multiple analysis parameters; Average absolute percentage error (AAPE), Root Mean Squared Error (RMSE), coefficient of determination (R2). All models investigated are tested on an unseen dataset to prevent a biased model's development. Performance of the established AI models is gauged based on this error metric, demonstrating that ANN outperforms ANFIS with error within 1% of the measured PVT values. A computationally derived intelligent model provides the strongest predictive capabilities as it maps complex non-linear interactions between various input parameters leading to FVF.\",\"PeriodicalId\":11024,\"journal\":{\"name\":\"Day 4 Wed, December 01, 2021\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 4 Wed, December 01, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/204561-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 4 Wed, December 01, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/204561-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Artificial Intelligence-based Predictive Technique to Estimate Oil Formation Volume Factor
This investigation presents a powerful predictive model to determine crude oil formation volume factor (FVF) using state-of-the-art artificial intelligence (AI) techniques. FVF is a vital pressure-volume-temperature (PVT) parameter used to characterize hydrocarbon systems and is pivotal to reserves calculation and reservoir engineering studies. Ideally, FVF is measured at the laboratory scale; however, prognostic tools to evaluate this parameter can optimize time and cost estimates. The database utilized in this study is obtained from open literature and covers statistics of crude oils of the Middle East region.
Multiple AI algorithms are considered, including Artificial Neural Networks (ANN) and Artificial Neural Fuzzy Inference Systems (ANFIS). Models are developed utilizing an optimization strategy for various parameters/hyper-parameters of the respective algorithms. Unique permutations and combinations for the number of perceptron and their resident layers is investigated to reach a solution that provides the most optimum output. These intelligent models are produced as a function of the parameters intrinsically affecting FVF; reservoir temperature, solution GOR, gas specific gravity, bubble point pressure, and crude oil API gravity. Comparative analysis of developed AI models is performed using visualization/statistical analysis, and the best model is pointed out. Finally, the mathematical equation extraction to determine FVF is accomplished with the respective weights and bias for the model presented.
Graphical analysis is used to evaluate the performance of developed AI models. The results of scatter plots showed most of the points are lying on the 45 degree line. Moreover, during this study, an error metric is developed comprising of multiple analysis parameters; Average absolute percentage error (AAPE), Root Mean Squared Error (RMSE), coefficient of determination (R2). All models investigated are tested on an unseen dataset to prevent a biased model's development. Performance of the established AI models is gauged based on this error metric, demonstrating that ANN outperforms ANFIS with error within 1% of the measured PVT values. A computationally derived intelligent model provides the strongest predictive capabilities as it maps complex non-linear interactions between various input parameters leading to FVF.