欧拉和准地转模式的涡旋崩塌

Ludovic Godard-Cadillac
{"title":"欧拉和准地转模式的涡旋崩塌","authors":"Ludovic Godard-Cadillac","doi":"10.3934/dcds.2022012","DOIUrl":null,"url":null,"abstract":"This article studies point-vortex models for the Euler and surface quasi-geostrophic equations. In the case of an inviscid fluid with planar motion, the point-vortex model gives account of dynamics where the vorticity profile is sharply concentrated around some points and approximated by Dirac masses. This article contains two main theorems and also smaller propositions with several links between each other. The first main result focuses on the Euler point-vortex model, and under the non-neutral cluster hypothesis we prove a convergence result. The second result is devoted to the generalization of a classical result by Marchioro and Pulvirenti concerning the improbability of collapses and the extension of this result to the quasi-geostrophic case.","PeriodicalId":11254,"journal":{"name":"Discrete & Continuous Dynamical Systems - S","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Vortex collapses for the Euler and Quasi-Geostrophic models\",\"authors\":\"Ludovic Godard-Cadillac\",\"doi\":\"10.3934/dcds.2022012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article studies point-vortex models for the Euler and surface quasi-geostrophic equations. In the case of an inviscid fluid with planar motion, the point-vortex model gives account of dynamics where the vorticity profile is sharply concentrated around some points and approximated by Dirac masses. This article contains two main theorems and also smaller propositions with several links between each other. The first main result focuses on the Euler point-vortex model, and under the non-neutral cluster hypothesis we prove a convergence result. The second result is devoted to the generalization of a classical result by Marchioro and Pulvirenti concerning the improbability of collapses and the extension of this result to the quasi-geostrophic case.\",\"PeriodicalId\":11254,\"journal\":{\"name\":\"Discrete & Continuous Dynamical Systems - S\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete & Continuous Dynamical Systems - S\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/dcds.2022012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Continuous Dynamical Systems - S","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/dcds.2022012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文研究了欧拉方程和曲面拟地转方程的点涡模型。对于具有平面运动的无粘流体,点涡模型给出了涡度剖面在某些点附近急剧集中并由狄拉克质量近似的动力学情况。这篇文章包含两个主要定理和一些相互联系的小命题。第一个主要结果集中在欧拉点涡模型上,在非中性聚类假设下证明了一个收敛结果。第二个结果是对Marchioro和Pulvirenti关于崩塌不概率的经典结果的推广,并将这一结果推广到准地转情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vortex collapses for the Euler and Quasi-Geostrophic models
This article studies point-vortex models for the Euler and surface quasi-geostrophic equations. In the case of an inviscid fluid with planar motion, the point-vortex model gives account of dynamics where the vorticity profile is sharply concentrated around some points and approximated by Dirac masses. This article contains two main theorems and also smaller propositions with several links between each other. The first main result focuses on the Euler point-vortex model, and under the non-neutral cluster hypothesis we prove a convergence result. The second result is devoted to the generalization of a classical result by Marchioro and Pulvirenti concerning the improbability of collapses and the extension of this result to the quasi-geostrophic case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信