{"title":"晶体硅太阳能组件缺陷表征的线扫描发光成像技术比较","authors":"Iskra Zafirovska, M. Juhl, T. Trupke","doi":"10.1109/PVSC.2018.8547434","DOIUrl":null,"url":null,"abstract":"Luminescence inspection of modules is currently being adopted as a standard practice in the photovoltaic industry. This paper presents a comparison of electroluminescence and photoluminescence imaging on industrial crystalline silicon modules, employed with a line scan system. We find that specific defects appear differently in the two techniques due to the difference in excitation method. Line scan photoluminescence images enable differentiation of series resistance defects from recombination defects and can identify the presence of encapsulant discolouration. Line scan electroluminescence images allow defects that prevent majority carrier transport to be evaluated. The use of both techniques enables robust defect characterisation.","PeriodicalId":6558,"journal":{"name":"2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC)","volume":"1 1","pages":"1364-1369"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Comparison of Line Scan Luminescence Imaging Techniques for Defect Characterisation in Crystalline Silicon Solar Modules\",\"authors\":\"Iskra Zafirovska, M. Juhl, T. Trupke\",\"doi\":\"10.1109/PVSC.2018.8547434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Luminescence inspection of modules is currently being adopted as a standard practice in the photovoltaic industry. This paper presents a comparison of electroluminescence and photoluminescence imaging on industrial crystalline silicon modules, employed with a line scan system. We find that specific defects appear differently in the two techniques due to the difference in excitation method. Line scan photoluminescence images enable differentiation of series resistance defects from recombination defects and can identify the presence of encapsulant discolouration. Line scan electroluminescence images allow defects that prevent majority carrier transport to be evaluated. The use of both techniques enables robust defect characterisation.\",\"PeriodicalId\":6558,\"journal\":{\"name\":\"2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC)\",\"volume\":\"1 1\",\"pages\":\"1364-1369\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC.2018.8547434\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2018.8547434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparison of Line Scan Luminescence Imaging Techniques for Defect Characterisation in Crystalline Silicon Solar Modules
Luminescence inspection of modules is currently being adopted as a standard practice in the photovoltaic industry. This paper presents a comparison of electroluminescence and photoluminescence imaging on industrial crystalline silicon modules, employed with a line scan system. We find that specific defects appear differently in the two techniques due to the difference in excitation method. Line scan photoluminescence images enable differentiation of series resistance defects from recombination defects and can identify the presence of encapsulant discolouration. Line scan electroluminescence images allow defects that prevent majority carrier transport to be evaluated. The use of both techniques enables robust defect characterisation.