基于群体智能的图像阈值分割技术

Shivali, Ekta Sharma, P. Mahapatra, Amit Doegar
{"title":"基于群体智能的图像阈值分割技术","authors":"Shivali, Ekta Sharma, P. Mahapatra, Amit Doegar","doi":"10.1109/INCITE.2016.7857626","DOIUrl":null,"url":null,"abstract":"Image thresholding is a critical task of image segmentation. Selection of the optimal value of the threshold is the most important task for image thresholding. The better the value of threshold better is the quality of segmentation. In this paper, recent swarm intelligence technique (fireworks algorithm) has been used for image thresholding. Fireworks algorithm is used to maximize two functions, namely Kapur and Otsu. Results show that quality of segmentation is better in case of Firewok-Otsu than Firework-Kapur. Comparison of results has been done on the basis of PSNR value.","PeriodicalId":59618,"journal":{"name":"下一代","volume":"8 1","pages":"251-255"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Image thresholding based on swarm intelligence technique for image segmentation\",\"authors\":\"Shivali, Ekta Sharma, P. Mahapatra, Amit Doegar\",\"doi\":\"10.1109/INCITE.2016.7857626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image thresholding is a critical task of image segmentation. Selection of the optimal value of the threshold is the most important task for image thresholding. The better the value of threshold better is the quality of segmentation. In this paper, recent swarm intelligence technique (fireworks algorithm) has been used for image thresholding. Fireworks algorithm is used to maximize two functions, namely Kapur and Otsu. Results show that quality of segmentation is better in case of Firewok-Otsu than Firework-Kapur. Comparison of results has been done on the basis of PSNR value.\",\"PeriodicalId\":59618,\"journal\":{\"name\":\"下一代\",\"volume\":\"8 1\",\"pages\":\"251-255\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"下一代\",\"FirstCategoryId\":\"1092\",\"ListUrlMain\":\"https://doi.org/10.1109/INCITE.2016.7857626\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"下一代","FirstCategoryId":"1092","ListUrlMain":"https://doi.org/10.1109/INCITE.2016.7857626","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

图像阈值分割是图像分割的一项关键任务。选取最优阈值是图像阈值分割中最重要的任务。阈值越高,分割质量越好。本文将最新的群体智能技术(烟花算法)用于图像阈值分割。烟花算法用于最大化Kapur和Otsu两个函数。结果表明,“firework - otsu”的分割质量优于“Firework-Kapur”。根据PSNR值对结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image thresholding based on swarm intelligence technique for image segmentation
Image thresholding is a critical task of image segmentation. Selection of the optimal value of the threshold is the most important task for image thresholding. The better the value of threshold better is the quality of segmentation. In this paper, recent swarm intelligence technique (fireworks algorithm) has been used for image thresholding. Fireworks algorithm is used to maximize two functions, namely Kapur and Otsu. Results show that quality of segmentation is better in case of Firewok-Otsu than Firework-Kapur. Comparison of results has been done on the basis of PSNR value.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
6212
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信