氢氧催化键合用于航天的准整体结构

A. Preston, J. Thorpe, L. Miner
{"title":"氢氧催化键合用于航天的准整体结构","authors":"A. Preston, J. Thorpe, L. Miner","doi":"10.1109/AERO.2012.6187157","DOIUrl":null,"url":null,"abstract":"Next generation space telescopes and interferometric missions will require stringent position and stability tolerances. To do this, these missions will require materials and bonding techniques with ever-increasing stability in order to make their measurements. As an example, the Laser Interferometer Space Antenna (LISA) will detect and observe gravitational waves in the 0.1 mHz to 1 Hz frequency range with strain sensitivities on the order of 10-21 at its most sensitive frequency. To make these measurements, critical components such as the optical bench or telescope support structure will need to have path-length stabilities of better than 1 pm/√Hz. The baseline construction method for the LISA optical bench is to affix fused silica components to a Zerodur baseplate using hydroxide-catalysis bonding (HCB). HCB is a recently developed technique that allows the bonding of glasses, some metals, and silicon carbide with significant strength and stability with a bond thickness of less than a few micrometers. In addition, a wide range of surface profiles can be bonded using only a small amount of hydroxide solution. These characteristics make HCB ideal for adhering components in complex optical systems. In addition to being used to construct the LISA optical bench, the HCB technique shows great promise for constructing other structures such as hollow retroreflectors to be used for lunar laser ranging, or a visible nulling coronograph to be used for exoplanet detection. Here we present construction techniques that could be used to make an optical bench, hollow retroreflector, nulling coronograph, or other quasi-monolithic structures using HCB. In addition, we present dimensional stability results of an optical bench that was made using HCB, as well as HCB strength measurements.","PeriodicalId":6421,"journal":{"name":"2012 IEEE Aerospace Conference","volume":"1 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Quasi-monolithic structures for spaceflight using hydroxide-catalysis bonding\",\"authors\":\"A. Preston, J. Thorpe, L. Miner\",\"doi\":\"10.1109/AERO.2012.6187157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Next generation space telescopes and interferometric missions will require stringent position and stability tolerances. To do this, these missions will require materials and bonding techniques with ever-increasing stability in order to make their measurements. As an example, the Laser Interferometer Space Antenna (LISA) will detect and observe gravitational waves in the 0.1 mHz to 1 Hz frequency range with strain sensitivities on the order of 10-21 at its most sensitive frequency. To make these measurements, critical components such as the optical bench or telescope support structure will need to have path-length stabilities of better than 1 pm/√Hz. The baseline construction method for the LISA optical bench is to affix fused silica components to a Zerodur baseplate using hydroxide-catalysis bonding (HCB). HCB is a recently developed technique that allows the bonding of glasses, some metals, and silicon carbide with significant strength and stability with a bond thickness of less than a few micrometers. In addition, a wide range of surface profiles can be bonded using only a small amount of hydroxide solution. These characteristics make HCB ideal for adhering components in complex optical systems. In addition to being used to construct the LISA optical bench, the HCB technique shows great promise for constructing other structures such as hollow retroreflectors to be used for lunar laser ranging, or a visible nulling coronograph to be used for exoplanet detection. Here we present construction techniques that could be used to make an optical bench, hollow retroreflector, nulling coronograph, or other quasi-monolithic structures using HCB. In addition, we present dimensional stability results of an optical bench that was made using HCB, as well as HCB strength measurements.\",\"PeriodicalId\":6421,\"journal\":{\"name\":\"2012 IEEE Aerospace Conference\",\"volume\":\"1 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Aerospace Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AERO.2012.6187157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Aerospace Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AERO.2012.6187157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

下一代太空望远镜和干涉测量任务将需要严格的位置和稳定性公差。要做到这一点,这些任务将需要稳定性不断提高的材料和粘合技术,以便进行测量。例如,激光干涉仪空间天线(LISA)将探测和观测0.1 mHz至1hz频率范围内的引力波,其最敏感频率的应变灵敏度为10-21。为了进行这些测量,光学平台或望远镜支撑结构等关键部件需要具有优于1 pm/√Hz的路径长度稳定性。LISA光学工作台的基线构建方法是使用氢氧化物催化键合(HCB)将熔融二氧化硅组件固定在Zerodur基板上。HCB是最近发展起来的一种技术,它可以将玻璃、一些金属和碳化硅结合在一起,其结合厚度小于几微米,具有显著的强度和稳定性。此外,仅使用少量氢氧化物溶液就可以粘合各种表面轮廓。这些特性使HCB成为复杂光学系统中粘附元件的理想选择。除了用于构建LISA光学平台之外,HCB技术在构建其他结构方面显示出巨大的前景,例如用于月球激光测距的空心后向反射器,或用于系外行星探测的可见零化日冕仪。在这里,我们介绍了可用于制作光学工作台、空心后向反射器、消光日冕仪或其他使用HCB的准单片结构的构造技术。此外,我们还介绍了使用HCB制成的光学工作台的尺寸稳定性结果,以及HCB强度测量结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quasi-monolithic structures for spaceflight using hydroxide-catalysis bonding
Next generation space telescopes and interferometric missions will require stringent position and stability tolerances. To do this, these missions will require materials and bonding techniques with ever-increasing stability in order to make their measurements. As an example, the Laser Interferometer Space Antenna (LISA) will detect and observe gravitational waves in the 0.1 mHz to 1 Hz frequency range with strain sensitivities on the order of 10-21 at its most sensitive frequency. To make these measurements, critical components such as the optical bench or telescope support structure will need to have path-length stabilities of better than 1 pm/√Hz. The baseline construction method for the LISA optical bench is to affix fused silica components to a Zerodur baseplate using hydroxide-catalysis bonding (HCB). HCB is a recently developed technique that allows the bonding of glasses, some metals, and silicon carbide with significant strength and stability with a bond thickness of less than a few micrometers. In addition, a wide range of surface profiles can be bonded using only a small amount of hydroxide solution. These characteristics make HCB ideal for adhering components in complex optical systems. In addition to being used to construct the LISA optical bench, the HCB technique shows great promise for constructing other structures such as hollow retroreflectors to be used for lunar laser ranging, or a visible nulling coronograph to be used for exoplanet detection. Here we present construction techniques that could be used to make an optical bench, hollow retroreflector, nulling coronograph, or other quasi-monolithic structures using HCB. In addition, we present dimensional stability results of an optical bench that was made using HCB, as well as HCB strength measurements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信